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1)  ABBREVIATIONS 

 

HCC = Hepatocellular carcinoma 

RFA = Radiofrequency ablation 

LI-RADS = Liver Imaging Reporting And Data System 

CT = Computed tomography 

MRI = Magnetic-resonance imaging 

US = Ultrasound 

BCLC = Barcelona Clinic Liver Cancer 

DL = Deep learning 

CNN = Convolutional neural network 

STARD = Standards for Reporting of Diagnostic Accuracy guidelines 

PACS = Picture archiving and communication system 

FNH = Focal nodular hyperplasia 

ICC = Intrahepatic cholangiocarcinoma 

CRC = Colorectal carcinoma 

SD = Standard deviation 

Sn = Sensitivity 

Sp = Specificity 

PPV = Positive predictive value 

AUC = Area under the curve 

OPTN = Organ Procurement and Transplantation Network 

NAFLD = Non-alcoholic fatty liver disease 

 

  



2)  INTRODUCTION 

Hepatocellular carcinoma (HCC) is a rapidly growing global health problem, representing as it 

does the most common primary liver cancer and the third most common cause of cancer-related 

deaths worldwide 1-3.  The stratification and treatment planning of patients with HCC is a 

challenging task and often requires interdisciplinary co-operation of the clinicians on the tumor 

board.  Radiological information, such as lesion entity, size and vascular involvement, play a 

pivotal role in the clinical decision-making for such patients 4,5.  Despite many proposed 

systems for staging and classification, there is currently no globally accepted approach for 

assessing HCC patients, and prognosis is often poor 6,7.  However, improved prognosis can be 

achieved when the diagnosis is made at an early stage of the disease, as curative-intent therapies 

(radiofrequency ablation (RFA), resection) are usually applicable for lesions smaller than 

2 cm 8.  This underscores the clinical need for continuous advancements in imaging for early 

diagnosis of HCC. 

A substantive contribution to radiological diagnosis could be made by the introduction 

of better standardization in the assessment of images and the reporting thereof.  This would first 

of all decrease the potential for variation and for subjective factors in the interpretation of 

images, and thus in the errors that can ensue from these.  Secondly, it would improve – in terms 

of both accuracy and speed – the communication of results to the clinicians involved.  Finally, 

it would raise the standard of research and the reliability of quality-assurance procedures. The 

Liver Imaging Reporting and Data System (LI-RADS) was developed to provide a standardized 

analysis and reporting system for computed tomography (CT) and magnetic-resonance imaging 

(MRI) of patients at risk of developing HCC 9.  Improved quality and availability of oncological 

imaging, in combination with standardized reporting systems such as LI-RADS, has decreased 

the need for invasive biopsy of hepatic lesions larger than 2 cm, propelling imaging-based 

diagnosis to a more central position in diagnosis of HCC.  While LI-RADS has changed the 

diagnostic workflow for malignant lesions and contributed to a higher quality in diagnosis and 

reporting 9-11, a majority of studies have shown at best moderate inter-observer agreement for 

LI-RADS categories 12-18.  In addition, biannual ultrasonography (US), despite its potentially 

impaired sensitivity in nodular cirrhotic livers, is generally recommended for the surveillance 

of patients at risk of HCC, facilitating detection at an early stage 19.  However, a recent study 

showed that MRI is the more cost-effective and sensitive modality in the detection of early-

stage HCC in patients at risk 19.  At first glance MRI appears more expensive, but the high 

detection rate of very-early-stage HCC (Barcelona Clinic Liver Cancer (BCLC) stage 0) has 

been shown to increase the effectiveness of curative-intent treatment approaches and to 



engender a lower probability of HCC recurrence and mortality, thereby decreasing overall 

costs 19. 

Given the unmet clinical need for improved HCC diagnosis and the improved soft-tissue 

contrast resolution of MRI, it is plausible that a deep learning (DL) system could extract hidden 

information and comprehensively analyze numerous features from MR images.  This may lead 

to higher accuracy in staging and improved treatment planning for cancer patients.  The 

majority of artificial-intelligence techniques in the field of medical imaging rely on training 

sets with manually defined features, limiting the model to predefined diagnostic patterns.  

Unlike those techniques, DL systems based on convolutional neural networks (CNNs) do not 

need any manually defined features to interpret images, and they may even uncover additional 

differential features not yet identified in current radiological practice 20.  As CNN-based DL 

systems have shown a potential to improve markedly the process of radiological diagnosis 21-

24, there is room for a workflow that brings together the experience of practicing radiologists 

on the one hand and the computational power of artificial intelligence on the other, with a view 

to increasing primarily the quality and secondarily the efficiency of patient care.  The potential 

for such a combination of human and computational resources has not yet been fully exploited 

in the field of HCC. 

Although CNNs have demonstrated immense potential to enhance imaging-based 

diagnosis 23, their “black box” design has so far limited their adoption in clinical routine 25-27.  

In their current form, CNNs cannot provide information about the factors used to arrive at 

predictions, and this in turn can prevent physicians from incorporating computational results 

into an informed decision-making process.  The inability of CNNs to “explain their reasoning” 

also leads to a dearth of safeguards, and to a lack accountability when they fail.  Interpretable 

DL systems that provide high-quality results in a more transparent manner would help to 

facilitate the migration of DL systems from the research unit into clinical practice. 

 

3)  PURPOSE OF THE STUDY 

This study introduces the concept of a comprehensive interpretable DL system for liver tumor 

diagnosis based on magnetic-resonance images.  The purpose of this study was to develop an 

interpretable deep learning system in which high accuracy was validated by comparison with 

radiologists’ findings and with a transparency that made it possible to “justify” its decisions to 

physicians. 

 



4)  MATERIALS AND METHODS 

A description of the materials and methods used in this work were published in advance 28,29.  

Thus, complete details of these can be found in the publications attached to this work. 

This was a single-center, retrospective study compliant with the U.S. Health Insurance 

Portability and Accountability Act. The study design was in agreement with the Standards for 

Reporting of Diagnostic Accuracy guidelines (STARD). The study was approved by the 

institutional review board of the unit where the work was performed; informed consent was 

waived.  The two components of the study involved (i) developing and validating a CNN-based 

liver-tumor classifier, followed by (ii) application of self-engineered algorithms to analyze 

specific hidden layers of this pre-trained CNN in a model-agonistic approach. 

 

4.1  STUDY COHORT SELECTION 

The picture archiving and communication system (PACS) was searched for abdominal MRI 

examinations between 2010 and 2017 depicting one of the following hepatic lesions: cavernous 

hemangioma, focal nodular hyperplasia (FNH), simple cyst, intrahepatic cholangiocarcinoma 

(ICC), colorectal cancer (CRC) metastasis and HCC.  Owing to the limited availability of 

pathological proof, lesions were restricted to those demonstrating typical imaging 

characteristics.  Moreover, additional diagnostic criteria were incorporated, to maximize the 

certainty of definite diagnosis.  Typical imaging features, radiological-histopathological 

correlation and clinical data were criteria defining the “ground truth” utilized for each lesion 

type.  Diagnosed lesions formally described by the radiology faculty in official reports were 

validated by another radiological reader according to diagnostic criteria defined for this study, 

and lesions presenting discrepancies between “ground truth” criteria and inclusion criteria were 

excluded. A detailed listing of these “ground truth” criteria used can be found in the 

supplementary material in the publications attached to this work (Tab. S1) 28, which also give 

further details on the inclusion and exclusion criteria (in the section of “Establishment of 

‘ground truth’ cases”) 28. 

 

4.2  MRI ACQUISITION PROTOCOL AND IMAGE PROCESSING 

All MRI scans were performed on clinical 1.5 T or 3 T scanners.  T1-weighted breath-hold 

sequences were used, with acquisition times of 12–18 seconds.  After a bolus injection of 

macrocyclic gadolinium-based contrast agent, several post-contrast imaging series were 

obtained.  Images were acquired at three time points after contrast-agent administration: late 

arterial phase (individually timed, but usually around 20 seconds after contrast injection), portal 



venous phase (~70 seconds after injection) and delayed venous phase (~3 min after injection).  

Between 2010 and 2017 several different MRI scanners and imaging protocols were used.  

However, although scanners and protocols may have differed in specific imaging parameters, 

the T1-weighted sequences used in this study met the purpose of the study. 

Files associated with eligible MRI studies were downloaded from the PACS, and the 

images from each patient were re-evaluated by a radiological reader to confirm the reported 

diagnosis.  If reference standard and inclusion criteria were fulfilled, then the location and size 

of a 3D bounding box around the target lesion were recorded manually. 

The images were processed using code written in the programming language Python 3.5 

(Python Software Foundation, Beaverton, Oregon, USA).  Portal-vein and delayed-phase MRI 

studies were registered to the arterial phase by using affine registration with a mutual 

information metric.  Images were cropped on the basis of the 3D bounding box to the lesion 

and its surrounding tissue, and cropped regions were then re-sampled to a resolution of 

24´24´12 voxels (Fig. 2 in Hamm et al. 28). 

The data set comprised 494 lesions. Monte Carlo cross-validation was used for CNN 

training and testing.  In each iteration of training and testing, 10 of the lesions in the data set 

were chosen at random from each class. Together, the 60 lesions chosen comprised 12% of the 

dataset.  These 60 lesions were assigned to the test set, while the other 434 lesions were assigned 

to the training set. In order to increase the volume of training samples, images of the training 

set were augmented by a factor of ca. 100, giving 43,400 images in all.  During augmentation, 

images underwent random scaling, rotation, translation and/or horizontal/vertical flipping.  

Data augmentation is an established machine-learning technique that allows a model to learn 

imaging features that are invariant to translation or rotation 30.  Phases were shifted randomly 

relative to each other to add robustness to imperfectly registered phases.  The brightness and 

contrast of the image were also changed randomly. 

 

4.3  DEEP LEARNING MODEL 

For CNN model training a GeForce GTX 1060 (NVIDIA, Santa Clara, California, USA) 

graphics-processing unit was used.  The model was built using Python 3.5 and Keras 2.2 

(https://keras.io/) 31 running on a Tensorflow backend (Google, Mountain View, California, 

USA, https://www.tensorflow.org/).  The CNN that was built comprised three convolutional 

layers, where the first layer had 64 convolutional filters for each of the 3 phases in the original 

image, and the other two had 128 filters across all phases.  The model contained two maximum 

pooling layers (size 2´2´2 and 2´2´1 respectively), which is a standard deep-learning 



technique to facilitate learning.  The final CNN comprised two fully connected layers, in which 

the first had 100 neurons while the second utilized a softmax output to six categories, 

corresponding to the six lesion types (Fig. 3 in Hamm et al. 28).  The CNN also used rectified 

linear units in conjunction with regularization techniques after convolutional and fully 

connected layers: this facilitates the learning of non-linear features and helps the model to 

generalize beyond the training set data respectively 30,32. 

The selected imaging studies used for training and testing comprised a total of 296 

patients, patient and imaging characteristics are displayed below (Tab. 1 & Fig. 1 in Hamm et 

al. 28).  The training of the CNN was performed with an Adam optimizer 33, utilizing randomly 

chosen samples from each class from the training dataset.  The model was then tested for its 

ability to classify correctly 60 lesions in the test set (10 from each lesion class).  Overall, the 

model’s performance was validated over 20 independent training iterations with different 

groupings of training and test sets, to yield a more accurate assessment. 

 
Table 1: Patient and image characteristics.  The ‘total’ column does not equal the sum of the rows because 
some MRI studies had more than one lesion type.  (SD = standard deviation; adapted from Hamm et al. 28) 

Patient characteristics Cavernous 
hemangioma FNH Cyst ICC CRC 

metastasis HCC Total 

Number of patients 49 53 37 36 39 88 296 

Male 
Female 

17 
32 

8 
45 

19 
18 

18 
18 

27 
12 

67 
21 

155 
141 

Age at imaging 
(mean  ±  SD) 50 ± 11 43 ± 11 62 ± 10 63 ± 14 61 ± 14 63 ± 8 57 ± 14 

Image characteristics        

Number of MRI studies 50 57 42 49 44 96 334 

Number of lesions 82 84 74 58 87 109 494 

Lesion diameter 
(mm, mean ± SD) 

25 
± 11.6 

28.4 
± 20.7 

21.7 
± 15.5 

45 
± 16.8 

26.4 
± 12.3 

24.4 
± 10 

27.5 
± 15.9 

4.4  READER STUDY 

Classification accuracy was compared between the CNN model and two board-certified 

radiologists (with respectively 39 and 7 years of experience), who did not take part in selecting 

the liver lesions used in this study.  The reader study was conducted on an OsiriX MD (v.9.0.1, 



Pixmeo SARL, Switzerland, Geneva) workstation, with several differences as compared with 

an actual clinical setting.  The reader study was performed on an anonymized dataset of 60 

lesions (10 randomly selected from each class), and the radiologists were fully blinded to 

laboratory and clinical data, outcomes, demographics, any prior or follow-up imaging, and to 

any additional MRI sequences.  The randomized test set was generated by using Monte Carlo 

cross-validation.  In order to mimic the radiologists’ “first exposure” to the MRI images and to 

compare their performance to the CNN, results of the reader study were compared after a single 

iteration.  Each radiologist independently classified the same 60 lesions characterized by the 

model in the test dataset using the original three contrast-enhanced MRI phases.  The 

performance of the radiologists was assessed in terms of (i) their ability to distinguish between 

the six liver-lesion types and (ii) their performance in respect of the three broader categories in 

which the application of a DL model to an HCC diagnostic imaging framework is simulated 

(here, LI-RADS; Tab. 2).  The radiologists was instructed not to scroll the image beyond the 

upper and lower edges of the lesion, as this would have risked their noticing any other lesions 

present within the patient’s liver, with the consequent introduction of a possible source of bias.  

The time taken by the radiologist to perform the assessment was noted; this began with the 

opening of the MRI phases and ended with the entry of the radiologist’s classification of the 

lesion. 

 
Table 2: Categories used in the reader study. Category 1, six individual lesion types (one out of six); 
Category 2, three broader categories in accordance to LI-RADS classes (one out of three) 

Category 1: 
Lesion type 

Category 2: 
Broader categories (LI-RADS classes) 

Cysts 
LR-1 (representing benign lesions) Cavernous hemangiomas 

FNHs 

HCCs LR-5 (HCC only) 

ICCs 
LR-M (non-HCC malignancy) 

CRC metastases 

4.5  INTERPRETABILITY OF THE DEEP LEARNING MODEL 

Full details of the technique of DL interpretability used in this study, with its post hoc 

probabilistic approach for analyzing hidden layers of a CNN, have been published 29.  

Therefore, the following section provides only a brief description of this rather technical aspect 

of the study 29. 



A set of fourteen imaging features was identified containing lesion-imaging characteristics that 

are useful for differentiating between various lesion types in T1-weighted triphasic contrast-

enhanced MRI.  For each feature, the training set was searched for hepatic lesions that best 

displayed each feature.  Up to 20 example lesions were selected for each feature; this resulted 

in a total of 224 lesions used across the 14 radiological features.  Also, a test set of 60 lesions 

was labelled with the most clearly dominant imaging features in each image (1-4 features per 

lesion).  In the end, this test set was used for validation of the model’s capabilities in feature 

extraction, and the test set was the same as that used to conduct the reader study described 

above. 

For each radiological feature, ten example lesions were selected randomly from the 224 

example lesions and passed through the CNN system, and the pre-activation outputs of the fully 

connected layer were examined.  By comparing these neuronal outputs among the ten examples, 

each radiological feature was associated with specific patterns in these neurons.  The test image 

was passed through the CNN to obtain its neuronal outputs, which were compared with the 

patterns of neuronal outputs that were associated with each feature.  If the outputs were 

sufficiently similar to a feature’s pattern, the CNN inferred that this feature was present in the 

test image.  The CNN was tested for its ability to identify correctly the radiological features in 

the test set of 60 lesions.  Performance was evaluated in 20 iterations with separately trained 

models using different (though overlapping) choices of the ten example lesions.  The voxels in 

the original image that contributed most to the presence of each feature identified were 

highlighted in feature maps by selecting voxels with the strongest positive correlations with the 

feature (as determined on the basis of the gradient of neurons in the fully connected layer with 

respect to the original image’s voxels).  The relative contribution of each identified feature to 

the classification of the lesion type was also evaluated (based on the Hessian of the objective 

function with respect to training examples that contained the feature of interest 34).  Further 

details of feature identification, mapping and scoring can be found in the supplementary 

information in the publication by Wang et al. 29 and the conference paper of our team 35. 

 

4.6  STATISTICS 

For the main analysis, the performance of the model was evaluated by Monte Carlo cross-

validation, averaging the sensitivity (Sn), specificity (Sp) and overall accuracy over 20 

iterations.  With regard to the validation of the CNN by radiological readings, the performances 

of the model and the radiologists were compared by evaluating their Sn, Sp and overall accuracy 

on the same single randomly selected test set.  In order to compare the model’s and radiologists’ 



performance in identifying HCC masses, a receiver operating characteristic curve was plotted.  

The performance of the model in image-feature extraction and identification was assessed by 

calculating the positive predictive value (PPV), Sn, precision and recall. 

 

5)  RESULTS 

The results of this work have been published in advance 28,29, and copies of the publications are 

attached to this thesis. 

 

5.1  DEEP LEARNING MODEL 

The DL system showed an average test accuracy of 91.9 ± 2.9% (1103/1200) and 94.3% ± 2.9% 

(1131/1200) among individual lesions and across the three broader categories respectively.  The 

initial training of the CNN took 29 ± 4 minutes.  Once the training was completed, the actual 

run time needed to classify each lesion in the test set was 5.6 ± 4.6 milliseconds.  The Sn and 

Sp achieved by the DL system across the six lesion classes as well as for the three LI-RADS-

derived classes is displayed below (Tab. 3).  The overall accuracy and run times of the model 

classification are displayed in the Table 3 of Hamm et al. 28, which is attached to this work.  

The workflow of lesion classification by the CNN is illustrated below (Fig. 1). 

 



Table 3: Model and radiologist performance metrics for individual lesion types and LI-RADS classes.  
(Adapted from Hamm et al. 28) 

 

Average of 20 
iterations Reader study 

Model test set Model Radiologist 1 Radiologist 2 

Sn Sp Sn Sp Sn Sp Sn Sp 

Lesion type 

Cavernous hemangioma 91% 99% 100% 100% 100% 96% 100% 94% 

FNH 91% 98% 90% 96% 90% 98% 90% 94% 

Cyst 99% 100% 100% 100% 90% 96% 100% 98% 

ICC 90% 97% 60% 100% 80% 94% 90% 100% 

CRC metastasis 89% 98% 100% 94% 50% 92% 70% 96% 

HCC 94% 98% 90% 98% 70% 100% 60% 100% 

Overall 92% 98% 90% 98% 80% 96% 85% 97% 

Derived LI-RADS class 

LR-1 
(n = 30) 94% 96% 97% 93% 97% 87% 100% 80% 

LR-5 
(n = 10) 94% 98% 90% 98% 70% 100% 60% 100% 

LR-M 
(n = 20) 95% 96% 95% 100% 85% 93% 85% 98% 

Overall 94% 97% 95% 96% 88% 91% 88% 89% 

 

 
Figure 1: Workflow of lesion classification by the CNN in the example of HCC classification. 

 
 

5.2  READER STUDY 

In the reader study (described above), the lesions could be classified. The model yielded a mean 

accuracy of 90% (55/60 lesions), while the two radiologists assessing the same lesions achieved 

respective accuracies of 80% (48/60) and 85% (51/60). For the three broader categories, the 

model gave an accuracy of 92% (58/60), against an accuracy of 88% (53/60) for each of the 



two radiologists. The Sn and Sp across the six lesion types and three broader categories 

achieved by the CNN and the radiologists in the reader study are given above (Tab. 3). The 

total time required for analyzing each lesion was 0.8 milliseconds for the classification model 

versus 14 ±10 seconds and 17 ±24 seconds for the radiologists.  Additionally, the performance 

of the model in HCC classification was investigated by plotting a receiver operating 

characteristic curve.  The DL system achieved an area under the curve (AUC) of 0.992 with a 

high sensitivity at the cost of a few false positives (Sn = 90%, false-positive rate = 2%; Fig. 4 

in Hamm et al. 28). 

 

5.3  INTERPRETABILITY OF THE DEEP LEARNING MODEL 

A total of 224 annotated images were used across the 14 radiological features, and some images 

were labelled with up to 4 features.  After being presented with a random subset of these 

examples, the model obtained a PPV of 76.5 ± 2.2% (2553/3339) and an Sn of 82.9 ± 2.6% 

(2553/3080) in identifying the 1–4 correct radiological features for the 60 manually labelled 

test lesions over 20 iterations.  The workflow of lesion classification and imaging feature 

identification by the CNN is illustrated below (Fig. 2). 

 
Figure 2: Workflow of lesion classification and imaging-feature extraction by the CNN in the 
example of ICC classification. 

 
 

In its assessment of individual features, the CNN performed best for the simpler enhancement 

patterns.  Presented with 2.6 labelled features on average per lesion, its performance was as 

summarized in Tab. 4.  For simpler image features (e.g. arterial-phase hyperenhancement, 

hyperenhancing mass on delayed phase, thin-walled mass), the CNN’s performance was good; 

for more complex ones (e.g. nodularity, infiltrative appearance) it was less so, and the central-

scar frequency was grossly overestimated, as there was only one such among the 60 lesions in 

the test set. 



Table 4:  Recognition of enhancement pattern by the model over 20 iterations.  The PPV and Sn of six 
example imaging features are shown. 

Overall precision 76.5 ± 2.2% (recall = 82.9 ± 2.6%) 

Misclassified lesions 144/1200 (12%) 

 PPV Sn 

Arterial-phase hyperenhancement  91.2% =  343/376  90.3% =  343/380 

Hyperenhancing mass on delayed phase  93.0% =  160/172  100% =  160/160 

Thin-walled mass  86.5% =  160/185  100% =  160/160 

Nodularity  62.9% =  73/116  60.8% =  73/120 

Infiltrative appearance  33.0% =  36/109  45.0% =  36/80 

Frequency of central scars  32.0% =  16/50  80.0% =  16/20 

All features, misclassified lesions only  56.6% =  259/458  63.8% =  259/406 
 

In classifying the lesion type, the CNN model put greater weight on radiological features that 

appeared more prominent in the image (Fig. 3).  Hyperenhancing mass in delayed phase was a 

clearly observed imaging feature in the cavernous hemangioma example, receiving a relevance 

score of 92%.  Arterial-phase hyper-enhancement was likewise clearly seen in the FNH 

example, and it received a relevance score of 96%.  In some of the features with low relevance 

scores, the feature map was less well defined.  For example, heterogeneous lesion of the ICC 

was assigned a relevance score of 7%, and had a very diffuse feature map.  Further details of 

the mapping of radiological features and their relevance can be found in the supplementary 

material of the study publication attached to this thesis 29. 

 



Figure 3: 2D slices of the feature maps and relevance scores for the examples of cavernous 
hemangioma, FNH and ICC with correctly identified features. 

6) DISCUSSION

This study demonstrates the development of a proof-of-concept “interpretable” deep learning 

system for the classification of liver lesions from multiphase contrast-enhanced MRI.  In 

addition to making high-accuracy predictions, this system was found to be capable of justifying 

its decisions by automatically identifying, mapping and scoring radiological features.  The 

system outperformed radiologists in distinguishing six lesion classes (model accuracy 90%, 

radiologist accuracies 80% and 85%), as well as in classifying lesions into three broader 

categories representing the LI-RADS classes for benign, HCC and malignant non-HCC lesions 

(model accuracy ~92%, radiologist accuracies ~88%), with a classification time of one 

millisecond per lesion. 

Previous studies have demonstrated CNN-based classification of liver lesions on single 

2D imaging slices using CT or US imaging 36-38, and this study builds on these approaches by 

classifying focal liver lesions on the basis of the reference standard of contrast-enhanced MRI. 

The improved soft-tissue contrast resolution inherent to MRI can enable DL systems to capture 

a wider variety of imaging features, contributing to superior diagnostic performance. 

Additionally, the heterogeneity of HCC lesions makes imaging-based diagnosis and staging 



especially challenging 6,39.  A volumetric approach using 3D data sets may lead to improved 

detection of enhancement patterns or inhomogeneous growth that may be relevant for lesion 

classification, while removing the model’s dependence upon manual slice selection (and 

consequent variability) 40.  To take further advantage of available imaging data, the present 

study introduces a DL system that interprets 3D volumes around each lesion.  Moreover, 

previously published studies have laid the foundation for computational classification of hepatic 

lesion types by grouping different lesion entities into three to five classes 36-38. However, when 

future clinical implementation is considered, it is clear that the challenge of classification 

becomes increasingly hard to meet when lesions are not grouped.  For this, more differential 

features must be learned, and the chance of achieving the correct classification decreases.  The 

present study included six ungrouped hepatic lesion types, showing high accuracy (~92%).  As 

anticipated, a higher overall accuracy (~94%) was reached with three grouped classes (LR-1, 

LR-5 and LR-M).  In this case, there is no penalty for mistaking slowly filling cavernous 

hemangiomas for cysts, or for confusing nodular ICCs with CRC metastases.  In addition, the 

heterogeneous imaging protocol (imaging studies from 2010–2017) and the inclusion of 

previously treated lesions demonstrate the robustness of the DL system toward applications 

where inhomogeneous data sets and variable lesion appearances are present. 

As the strength of DL systems become particularly visible when their performance is 

compared with that of experienced clinicians, reader studies have become an established tool 

to investigate their performance and clinical value.  The DL system in this study demonstrated 

a high Sn for CRC metastases and for HCC in comparison with the Sn achieved by radiologists. 

HCCs with faint enhancement or with unclear washout were prone to be misclassified by 

radiologists as CRC metastases or FNHs, respectively.  In contrast, the improved Sn for 

identifying HCCs suggests that the CNN could more reliably utilize yet unknown imaging 

features for classification.  It is of note that the diagnostic accuracy of the radiologists might 

have matched or exceeded the accuracy of the DL system if they had been given access to 

diagnostically relevant clinical information or other imaging sequences.  However, the 

moderate sensitivity and excellent specificity attained for HCC diagnosis by the radiologists in 

the reader study match the results of a recent study investigating the performance of LI-RADS 

for the diagnosis of HCC 41, indicating that radiologists are more likely to miss the diagnosis of 

HCC if classical imaging features are somewhat ambiguous.  As this study only included typical 

HCCs appearing according to the Organ Procurement and Transplantation Network (OPTN) 

criteria, it can be hypothesized that radiologists underestimate imaging features if no clinical 

data are available on the underlying condition. The application of standardized reporting 



systems, such as LI-RADS, is only targeted for an at-risk population presented with cirrhosis, 

chronic hepatitis B virus infection without cirrhosis, or current or prior HCC, including liver 

transplant recipients 42. However, non-alcoholic fatty liver disease (NAFLD) has emerged as 

the leading cause of chronic liver disease in most regions of the world, and it is the fastest-

growing cause of HCC-related transplants in the United States 43,44. Furthermore, among new 

HCC cases without advanced fibrotic liver changes in the United States, NAFLD constitutes 

the largest etiological proportion of cases 43. This entity poses an additional challenge to clinical 

practice paradigms based on HCC risk 43, and it highlights the need for reliable detection and 

extraction of imaging features within the lesion, despite underlying liver conditions which could 

bias the predictions of radiologists. The results of the reader study suggest that DL systems 

may be able to analyze imaging features within a lesion efficiently and possibly even make 

use of lesion characteristics that are unrecognized by the radiologist. 

Good diagnostic performance of the DL system indicates the possibility that CNNs 

can potentially be utilized as a quick and reliable “second opinion” for a radiologist in the 

diagnostic workup of focal liver lesions, helping to reduce inter-reader variability and 

difficulties in interpretation when radiological features are unclear or obscure. However, 

where patient diagnosis and treatment planning is concerned, it is unlikely that clinicians 

will accept an automated assessment if they cannot understand the algorithm’s reasoning. 

The method of scoring radiological features, as presented here, allows the algorithm to 

communicate how it arrives at its conclusion. With this, the referring radiologist can check 

quickly whether the DL system has detected features of the lesion correctly, by comparing 

the feature map with the lesion on the actual MRI image. The radiologist is thereby able to 

verify that detected imaging features correlate with the correct location in the lesion, and to 

exclude predictions based on incorrectly identified imaging features. 

The DL system was able to identify the majority of radiological features consistently, 

despite being provided with only 10 example lesions per class. Nonetheless, this study has 

demonstrated that the CNN had growing difficulty in identifying features correctly as the 

complexity of these features increased. The presence, location, and relevance for classification 

of simple imaging features – such as hypoenhancing or hyperenhancing masses – were 

determined reliably and accurately by the CNN, whereas the model performed worse in lesions 

with imaging features that consisted of patterns over several phases (such as washout or 

centripetal filling). In particular, the model struggled on more complex features, such as 

infiltrative appearance, that may appear quite variable across different lesions, suggesting either 

that more examples of these features are required for training or that these features are not 



sufficiently well defined by the CNN. Even so, there was a clear correlation between the CNN’s 

misclassifications of the lesion entity and its incorrect identification of radiological features.  

This could in the future provide clinicians, research workers and other relevant parties with 

sufficient transparency to make them aware of when – and, importantly, why– the CNN model 

has failed in individual cases. 

As shown in the results on feature relevance (Fig. 3), the model tends to place greater 

weight on imaging features that have greater uniqueness and differential diagnostic power in 

the respective lesion class. The method of scoring the relevance of single imaging features 

enables the interpretable DL system to be utilized as a tool for the validation of imaging 

guidelines, particularly for entities which are uncommon or have evolving imaging criteria, 

such as bi-phenotypic tumors and ICCs 11,45,46. One approach to this might be to present the DL 

system initially with a large set of candidate imaging features. The features with the highest 

relevance scores output by the model would then be selected. This would enable one to find out 

which features have the greatest relevance for members of a given lesion class. This would 

appear to be especially applicable in HCC diagnosis, as the majority of inter-reader studies have 

demonstrated an – at best – moderate level of reliability in determining LI-RADS classes 12-17, 

and the rigidity and complexity of LI-RADS constitutes a major barrier for broad adoption 16,47. 

Recent studies have also highlighted issues regarding the application of LI-RADS 

ancillary features, which are recommended for category adjustment, improved detection, and 

increased confidence in diagnosis 41,48.  However, these features are based primarily upon a 

combination of retrospective single-center studies, on biological plausibility and on expert 

opinion with a somewhat low level of evidence 47,48.  Here again, this problem could be tackled 

with the help of an interpretable DL system; this would allow an approach to the numerous 

ancillary imaging features specified in the LI-RADS guidelines, in that it would provide 

information on the relative importance of the diverse radiological features that go into a 

differential diagnosis. The CNN might, for example, find application in the validation of 

additional ancillary features suggested as being of relevance, and in charting their frequency of 

occurrence by application to a large patient cohort and subsequent analysis of the predictions 

generated by the CNN.  Features found only to have a low frequency, or considered to be of 

little relevance, could thus be considered for exclusion from the LI-RADS guidelines. An 

approach of this kind could be a stepping-stone on the path toward the generation of a protocol 

that could make diagnosis more efficient and more practical in clinical routine 12,16. 

Furthermore, the interpretable DL system classified lesions reliably as being ‘benign’, ‘HCC’ 

or ‘malignant non-HCC’ (roughly corresponding to LR-1, LR-5 and LR-M, respectively) with 



an accuracy of 94.3%. This DL model could interface with standardized reporting systems by 

the calculation of an average probability of the finding ‘HCC’ based on the model’s prediction 

and the diagnosis by the radiologist, in order to score lesions that are suspicious for HCC but 

that lack a definite benign or malignant appearance (i.e. LR-2/3/4).  Such shared decision-

making would help address the recently indicated need for simplification of LI-RADS in order 

to integrate it into the radiologist’s normal workflow 47. 

The clinical management of patients with liver malignancies depends greatly on 

radiology reports, which may include vague descriptions and may depend substantially on the 

experience of the referring radiologist.  In a DL system-supported diagnosis, the radiologist 

could use data on lesion classification and extracted imaging features provided by the DL 

system, thus supporting his subjective interpretation by adducing quantitative data, as the 

training of DL systems generally comprises several hundred exemplary lesions.  In addition, 

once the DL system has reached high accuracy levels, it analyses any lesion presented according 

to a predefined algorithm.  Thus DL systems can contribute with quantitative data to more 

evidence-based radiology reports, leading to higher reproducibility and diagnostic confidence. 

As opposed to many other malignancies, HCC incidence rates continue to rise 49, which may 

be expected to result in a continued trend of increasing imaging volumes, requiring more rapid 

and more reliable techniques for detecting and diagnosing HCC.  In addition, emerging risk 

factors such as NAFLD, diabetes and obesity may challenge the present-day diagnostic 

frameworks for HCC 43.  Highlighted by the high accuracy in lesion classification and 

extracted imaging features supporting the prediction, DL systems could support 

radiologists with reproducible quantitative data and thereby help clinicians to diagnose focal 

liver lesions earlier and with greater confidence. 

As the present study was designed as a proof-of-concept study, there are several 

limitations that a future multi-center study should address before clinical integration of DL can 

be considered.  As this was a retrospective single-center investigation, only a limited number 

of imaging studies were available for each class.  Thus, only lesions with typical appearance in 

MRI were used, excluding more complex lesions such as infiltrative HCC subtypes or 

complicated cysts.  Additionally, LI-RADS is only applicable to patients at high risk of HCC, 

and this study included many lesions in livers without cirrhosis or hepatitis B viral infection, so 

that the results do not necessarily reflect “real life” performance within an HCC diagnostic 

framework.  Because diagnoses such as FNH or CRC metastasis are much less common in 

cirrhotic livers, limiting the cohort to cirrhotic patients would have severely reduced the dataset. 

Yet, as mentioned above, NAFLD is the fastest-growing cause of HCC-related transplantation 



in the United States and constitutes the largest etiological proportion of cases among new HCC 

cases without advanced fibrosis or cirrhosis 43, suggesting that the current LI-RADS diagnostic 

framework will have to be adjusted. Additionally, as this was a retrospective study, with data 

from a limited number of patients at a single institution, the requisite pathological “ground 

truth” diagnosis was only available for a restricted number of the study lesions. Thus, this study 

used only lesions of “typical” appearance, and “ground truth” criteria were carefully selected 

and defined (Tab. S1 in Hamm et al. 28).  In the case of lesions for which no pathological 

diagnosis was available, this was replaced by the result of an analysis covering all the 

accessible image material (T1 pre-contrast, T2 etc.) and all the available clinical data.  

However, this additional image material was not used in the model training or in the reader 

study.  Therefore, their contribution to the CNN model’s performance will have to be assessed 

in further studies. A further limitation of this study was that the readers had no access to 

additional information such as clinical data, knowledge of disease progression, or evidence of 

prior surgery, which a radiologist would utilize in daily practice.  Therefore, for such 

lesions, it is not unreasonable for discrepancies to occur in this study between the 

“ground truth” and the reader’s classification.  In the context of these limitations, this 

approach and selected reference standards were appropriate for the study’s purposes of 

developing a proof-of-concept prototype from available data at a single large academic 

medical center.  Furthermore, there is no established ground truth for describing feature 

maps or relevance.  Therefore, future studies will be designed to demonstrate similar 

functionality using different choices of radiological features and lesion types, also taking 

into account the reproducibility of such techniques under different DL models.  These 

limitations should be addressed in the future through progressive refinements with 

multi-institutional data registries, utilizing larger and more diverse input data and a more 

complex CNN model capable of analyzing other types of MRI sequences. 

7) CONCLUSION

In summary, this study presents the development of an “interpretable” DL 

system prototype that exceeds the accuracy of radiologists in classifying hepatic 

lesions in contrast-enhanced MRI, while allowing insight into the algorithm’s decision-

making.  As comprehensibility and transparency are key barriers towards the practical 

integration of DL in clinical practice 50, the interpretable DL system presented here 

demonstrates its potential as a decision-support tool in liver lesion diagnosis; however, the 

clinical impact of the decision-support tool needs to be validated in a prospective study 

before it can be considered for integration into clinical practice. 



8) ENGLISH ABSTRACT

Objectives 

The purpose of this study was (i) to develop an interpretable deep learning system, of high 

accuracy, for classifying hepatic lesions in contrast-enhanced MRI, with a transparency that 

allows justification of its decisions to physicians and (ii) to validate this system by comparison 

of its diagnostic performance with that of radiologists. 

Methods 

This study included 296 patients with 494 hepatic lesions in six categories.  Lesions were 

identified by multiphasic MRI and divided into training (n=434) and test (n=60) sets. 

Established image augmentation techniques were used to increase the number of training 

samples to 43,400.  This training set was input to a custom-made convolutional neural network 

(CNN), consisting of three convolutional layers with associated rectified linear units, two 

maximum pooling layers, and two fully connected layers.  An Adam optimizer was used for 

model training.  Additionally, up to four key imaging features per lesion were assigned to a 

subset of each lesion class and a post-hoc algorithm was used to infer the presence of these 

features in a test set on the basis of activation patterns of the (trained) CNN model. Validation 

of the CNN was performed by comparing the diagnostic performance of the CNN with that of 

two board-certified radiologists.  This was carried out by Monte Carlo cross-validation, and the 

CNN’s performance on an identical unseen test set was compared with that of the radiologists. 

Feature maps highlighting regions in the original image that corresponded to particular features 

were generated.  A relevance score was then assigned to each feature identified, denoting the 

relative importance of the feature for the predicted lesion classification. 

Results 

The interpretable deep learning (DL) system demonstrated a 92% sensitivity (Sn), a 98% 

specificity (Sp), and a 92% accuracy.  Test set performance in a single run showed an average 

90% Sn and 98% Sp across the six lesion types, compared with an average 82.5% Sn and 96.5% 

Sp for radiologists, respectively.  Radiologists achieved an Sn of 60%–70% for classifying 

hepatocellular carcinoma, while the DL system achieved an Sn of 90%.  For the specific case 

of HCC classification the CNN achieved a receiver operating characteristic area under the curve 

of 0.992.  Computation time per lesion was 5.6 milliseconds. 



The positive predictive value and the Sn in identifying the correct radiological features present 

in each test lesion were 76.5% and 82.9%, respectively, while 12% of the lesions were 

misclassified; these misclassified lesions led more often to wrongly identified features than the 

correctly classified ones did (60.4% vs. 85.6%).  Original image voxels contributing to each 

imaging feature were consistent with the feature maps generated, and in each class the most 

prominent imaging criteria were reflected by their respective feature relevance scores. 

Conclusion 

This study presents the development of an “interpretable” DL system prototype, the accuracy 

of which exceeds that of radiologists in classifying hepatic lesions on contrast-enhanced 

MRI, while illuminating the algorithm’s decision-making.  The interpretable DL system 

presented demonstrates potential as a decision-support tool in liver lesion diagnosis; 

however, the clinical impact of the decision-support tool needs to be validated in a prospective 

study before the tool can be considered for integration into clinical practice. 

9) POLISH ABSTRACT

Cele 

Celami tego badania było: 

(i) opracowanie wysokiej dokładności systemu głębokiego uczenia się do oceny i

klasyfikacji zmian w wątrobie przy pomocy rezonansu magnetycznego z

kontrastem, z możliwością oceny podjętej decyzji przez lekarza oraz,

(ii) walidacja tego systemu przez porównanie jego wyników diagnostycznych z

wynikami uzyskanymi przez lekarzy radiologów.

Metody 

Badanie objęło 296 pacjentów z 494 zmianami chorobowymi wątroby podzielonymi na sześć 

kategorii. Zmiany zostały zidentyfikowane za pomocą wielofazowego MRI i podzielone na 

zestawy treningowe (n=434) i testowe (n=60). Dostępne techniki multiplikacji obrazu zostały 

wykorzystane w celu zwiększenia liczby próbek szkoleniowych do 43 400. Ten zestaw 

szkoleniowy wprowadzono do stworzonej na zamówienie sieci neuronów konwulsyjnych 

(CNN), składającej się z trzech warstw konwulsyjnych z powiązanymi prostymi jednostkami 

liniowymi, dwóch maksymalnych warstw zbiorczych oraz dwóch w pełni połączonych warstw. 

Optymalizator Adama został użyty w celu szkolenia. Maksymalnie cztery kluczowe cechy na 

każdą zmianę chorobową zostały przypisane do podzbioru każdej klasy zmiany, dodatkowo 



zastosowano algorytm post-hoc do wnioskowania o obecności tych cech w zestawie testowym 

na podstawie wzorów aktywacji (wytrenowanego) modelu CNN. Walidacja CNN została 

przeprowadzona poprzez porównanie wyników diagnostycznych CNN z wynikami dwóch 

specjalistów radiologii. Zostało to przeprowadzone w ramach walidacji krzyżowej Monte 

Carlo, a wyniki CNN na identycznym, niewidocznym zestawie testowym zostały porównane z 

wynikami radiologów. Wygenerowane zostały mapy cech wyróżniające regiony na 

oryginalnym obrazie, które odpowiadały poszczególnym cechom. Następnie do każdej 

zidentyfikowanej cechy przypisano ocenę istotności, oznaczającą względne znaczenie danej 

cechy dla przewidywanej klasyfikacji zmiany. 

 

Wyniki 

Interpretowalny system głębokiego uczenia się (DL) wykazał 92% czułości (Sn), 98% 

specyficzności (Sp) i 92% dokładności. Wydajność zestawu testowego w pojedynczym badaniu 

wykazała średnio 90% Sn i 98% Sp w sześciu typach zmian, w porównaniu do średnio 82,5% 

Sn i 96,5% Sp dla radiologów. Radiolodzy uzyskali Sn na poziomie 60%-70% do klasyfikacji 

raka wątrobowokomórkowego, natomiast system DL uzyskał Sn na poziomie 90%. Dla 

szczególnego przypadku klasyfikacji HCC CNN uzyskał obszar charakterystyki pracy pod 

krzywą 0,992. Czas obliczeniowy na jedną zmianę wynosił 5,6 milisekundy. 

Dodatnia wartość predykcyjna i Sn w identyfikacji prawidłowych cech radiologicznych 

występujących w każdej badanej zmianie wynosiły odpowiednio 76,5% i 82,9%, podczas gdy 

12% zmian było źle sklasyfikowanych; te źle sklasyfikowane zmiany częściej prowadziły do 

błędnej identyfikacji cech niż prawidłowo sklasyfikowane (60,4% vs 85,6%). Oryginalne 

woksle obrazowe przyczyniające się do każdej funkcji obrazowania były spójne z 

wygenerowanymi mapami cech, a w każdej klasie najbardziej znaczące kryteria obrazowania 

były odzwierciedlone przez ich odpowiednie oceny istotności cech. 

 

Wniosek 

W pracy przedstawiono rozwój "interpretowalnego" prototypu systemu głębokiego uczenia się, 

którego dokładność przewyższa dokładność radiologów w klasyfikowaniu zmian w wątrobie 

na MRI wzmocnionym kontrastem, przy jednoczesnym oświetleniu procesu podejmowania 

decyzji przez algorytm. Przedstawiony interpretacyjny system DL wykazuje potencjał jako 

narzędzie wspomagające podejmowanie decyzji w diagnostyce zmian chorobowych w 

wątrobie; jednakże wpływ kliniczny narzędzia wspomagającego podejmowanie decyzji musi 



być zweryfikowany w badaniu prospektywnym, zanim będzie można rozważyć jego włączenie 

do praktyki klinicznej. 
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