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1)  ABBREVIATIONS 

 

HCC = Hepatocellular carcinoma 

RFA = Radiofrequency ablation 

LI-RADS = Liver Imaging Reporting And Data System 

CT = Computed tomography 

MRI = Magnetic-resonance imaging 

US = Ultrasound 

BCLC = Barcelona Clinic Liver Cancer 

DL = Deep learning 

CNN = Convolutional neural network 

STARD = Standards for Reporting of Diagnostic Accuracy guidelines 

PACS = Picture archiving and communication system 

FNH = Focal nodular hyperplasia 

ICC = Intrahepatic cholangiocarcinoma 

CRC = Colorectal carcinoma 

SD = Standard deviation 

Sn = Sensitivity 

Sp = Specificity 

PPV = Positive predictive value 

AUC = Area under the curve 

OPTN = Organ Procurement and Transplantation Network 

NAFLD = Non-alcoholic fatty liver disease 

 

  



2)  INTRODUCTION 

Hepatocellular carcinoma (HCC) is a rapidly growing global health problem, representing as it 

does the most common primary liver cancer and the third most common cause of cancer-related 

deaths worldwide 1-3.  The stratification and treatment planning of patients with HCC is a 

challenging task and often requires interdisciplinary co-operation of the clinicians on the tumor 

board.  Radiological information, such as lesion entity, size and vascular involvement, play a 

pivotal role in the clinical decision-making for such patients 4,5.  Despite many proposed 

systems for staging and classification, there is currently no globally accepted approach for 

assessing HCC patients, and prognosis is often poor 6,7.  However, improved prognosis can be 

achieved when the diagnosis is made at an early stage of the disease, as curative-intent therapies 

(radiofrequency ablation (RFA), resection) are usually applicable for lesions smaller than 

2 cm 8.  This underscores the clinical need for continuous advancements in imaging for early 

diagnosis of HCC. 

A substantive contribution to radiological diagnosis could be made by the introduction 

of better standardization in the assessment of images and the reporting thereof.  This would first 

of all decrease the potential for variation and for subjective factors in the interpretation of 

images, and thus in the errors that can ensue from these.  Secondly, it would improve – in terms 

of both accuracy and speed – the communication of results to the clinicians involved.  Finally, 

it would raise the standard of research and the reliability of quality-assurance procedures. The 

Liver Imaging Reporting and Data System (LI-RADS) was developed to provide a standardized 

analysis and reporting system for computed tomography (CT) and magnetic-resonance imaging 

(MRI) of patients at risk of developing HCC 9.  Improved quality and availability of oncological 

imaging, in combination with standardized reporting systems such as LI-RADS, has decreased 

the need for invasive biopsy of hepatic lesions larger than 2 cm, propelling imaging-based 

diagnosis to a more central position in diagnosis of HCC.  While LI-RADS has changed the 

diagnostic workflow for malignant lesions and contributed to a higher quality in diagnosis and 

reporting 9-11, a majority of studies have shown at best moderate inter-observer agreement for 

LI-RADS categories 12-18.  In addition, biannual ultrasonography (US), despite its potentially 

impaired sensitivity in nodular cirrhotic livers, is generally recommended for the surveillance 

of patients at risk of HCC, facilitating detection at an early stage 19.  However, a recent study 

showed that MRI is the more cost-effective and sensitive modality in the detection of early-

stage HCC in patients at risk 19.  At first glance MRI appears more expensive, but the high 

detection rate of very-early-stage HCC (Barcelona Clinic Liver Cancer (BCLC) stage 0) has 

been shown to increase the effectiveness of curative-intent treatment approaches and to 



engender a lower probability of HCC recurrence and mortality, thereby decreasing overall 

costs 19. 

Given the unmet clinical need for improved HCC diagnosis and the improved soft-tissue 

contrast resolution of MRI, it is plausible that a deep learning (DL) system could extract hidden 

information and comprehensively analyze numerous features from MR images.  This may lead 

to higher accuracy in staging and improved treatment planning for cancer patients.  The 

majority of artificial-intelligence techniques in the field of medical imaging rely on training 

sets with manually defined features, limiting the model to predefined diagnostic patterns.  

Unlike those techniques, DL systems based on convolutional neural networks (CNNs) do not 

need any manually defined features to interpret images, and they may even uncover additional 

differential features not yet identified in current radiological practice 20.  As CNN-based DL 

systems have shown a potential to improve markedly the process of radiological diagnosis 21-

24, there is room for a workflow that brings together the experience of practicing radiologists 

on the one hand and the computational power of artificial intelligence on the other, with a view 

to increasing primarily the quality and secondarily the efficiency of patient care.  The potential 

for such a combination of human and computational resources has not yet been fully exploited 

in the field of HCC. 

Although CNNs have demonstrated immense potential to enhance imaging-based 

diagnosis 23, their “black box” design has so far limited their adoption in clinical routine 25-27.  

In their current form, CNNs cannot provide information about the factors used to arrive at 

predictions, and this in turn can prevent physicians from incorporating computational results 

into an informed decision-making process.  The inability of CNNs to “explain their reasoning” 

also leads to a dearth of safeguards, and to a lack accountability when they fail.  Interpretable 

DL systems that provide high-quality results in a more transparent manner would help to 

facilitate the migration of DL systems from the research unit into clinical practice. 

 

3)  PURPOSE OF THE STUDY 

This study introduces the concept of a comprehensive interpretable DL system for liver tumor 

diagnosis based on magnetic-resonance images.  The purpose of this study was to develop an 

interpretable deep learning system in which high accuracy was validated by comparison with 

radiologists’ findings and with a transparency that made it possible to “justify” its decisions to 

physicians. 

 



4)  MATERIALS AND METHODS 

A description of the materials and methods used in this work were published in advance 28,29.  

Thus, complete details of these can be found in the publications attached to this work. 

This was a single-center, retrospective study compliant with the U.S. Health Insurance 

Portability and Accountability Act. The study design was in agreement with the Standards for 

Reporting of Diagnostic Accuracy guidelines (STARD). The study was approved by the 

institutional review board of the unit where the work was performed; informed consent was 

waived.  The two components of the study involved (i) developing and validating a CNN-based 

liver-tumor classifier, followed by (ii) application of self-engineered algorithms to analyze 

specific hidden layers of this pre-trained CNN in a model-agonistic approach. 

 

4.1  STUDY COHORT SELECTION 

The picture archiving and communication system (PACS) was searched for abdominal MRI 

examinations between 2010 and 2017 depicting one of the following hepatic lesions: cavernous 

hemangioma, focal nodular hyperplasia (FNH), simple cyst, intrahepatic cholangiocarcinoma 

(ICC), colorectal cancer (CRC) metastasis and HCC.  Owing to the limited availability of 

pathological proof, lesions were restricted to those demonstrating typical imaging 

characteristics.  Moreover, additional diagnostic criteria were incorporated, to maximize the 

certainty of definite diagnosis.  Typical imaging features, radiological-histopathological 

correlation and clinical data were criteria defining the “ground truth” utilized for each lesion 

type.  Diagnosed lesions formally described by the radiology faculty in official reports were 

validated by another radiological reader according to diagnostic criteria defined for this study, 

and lesions presenting discrepancies between “ground truth” criteria and inclusion criteria were 

excluded. A detailed listing of these “ground truth” criteria used can be found in the 

supplementary material in the publications attached to this work (Tab. S1) 28, which also give 

further details on the inclusion and exclusion criteria (in the section of “Establishment of 

‘ground truth’ cases”) 28. 

 

4.2  MRI ACQUISITION PROTOCOL AND IMAGE PROCESSING 

All MRI scans were performed on clinical 1.5 T or 3 T scanners.  T1-weighted breath-hold 

sequences were used, with acquisition times of 12–18 seconds.  After a bolus injection of 

macrocyclic gadolinium-based contrast agent, several post-contrast imaging series were 

obtained.  Images were acquired at three time points after contrast-agent administration: late 

arterial phase (individually timed, but usually around 20 seconds after contrast injection), portal 



venous phase (~70 seconds after injection) and delayed venous phase (~3 min after injection).  

Between 2010 and 2017 several different MRI scanners and imaging protocols were used.  

However, although scanners and protocols may have differed in specific imaging parameters, 

the T1-weighted sequences used in this study met the purpose of the study. 

Files associated with eligible MRI studies were downloaded from the PACS, and the 

images from each patient were re-evaluated by a radiological reader to confirm the reported 

diagnosis.  If reference standard and inclusion criteria were fulfilled, then the location and size 

of a 3D bounding box around the target lesion were recorded manually. 

The images were processed using code written in the programming language Python 3.5 

(Python Software Foundation, Beaverton, Oregon, USA).  Portal-vein and delayed-phase MRI 

studies were registered to the arterial phase by using affine registration with a mutual 

information metric.  Images were cropped on the basis of the 3D bounding box to the lesion 

and its surrounding tissue, and cropped regions were then re-sampled to a resolution of 

24´24´12 voxels (Fig. 2 in Hamm et al. 28). 

The data set comprised 494 lesions. Monte Carlo cross-validation was used for CNN 

training and testing.  In each iteration of training and testing, 10 of the lesions in the data set 

were chosen at random from each class. Together, the 60 lesions chosen comprised 12% of the 

dataset.  These 60 lesions were assigned to the test set, while the other 434 lesions were assigned 

to the training set. In order to increase the volume of training samples, images of the training 

set were augmented by a factor of ca. 100, giving 43,400 images in all.  During augmentation, 

images underwent random scaling, rotation, translation and/or horizontal/vertical flipping.  

Data augmentation is an established machine-learning technique that allows a model to learn 

imaging features that are invariant to translation or rotation 30.  Phases were shifted randomly 

relative to each other to add robustness to imperfectly registered phases.  The brightness and 

contrast of the image were also changed randomly. 

 

4.3  DEEP LEARNING MODEL 

For CNN model training a GeForce GTX 1060 (NVIDIA, Santa Clara, California, USA) 

graphics-processing unit was used.  The model was built using Python 3.5 and Keras 2.2 

(https://keras.io/) 31 running on a Tensorflow backend (Google, Mountain View, California, 

USA, https://www.tensorflow.org/).  The CNN that was built comprised three convolutional 

layers, where the first layer had 64 convolutional filters for each of the 3 phases in the original 

image, and the other two had 128 filters across all phases.  The model contained two maximum 

pooling layers (size 2´2´2 and 2´2´1 respectively), which is a standard deep-learning 



technique to facilitate learning.  The final CNN comprised two fully connected layers, in which 

the first had 100 neurons while the second utilized a softmax output to six categories, 

corresponding to the six lesion types (Fig. 3 in Hamm et al. 28).  The CNN also used rectified 

linear units in conjunction with regularization techniques after convolutional and fully 

connected layers: this facilitates the learning of non-linear features and helps the model to 

generalize beyond the training set data respectively 30,32. 

The selected imaging studies used for training and testing comprised a total of 296 

patients, patient and imaging characteristics are displayed below (Tab. 1 & Fig. 1 in Hamm et 

al. 28).  The training of the CNN was performed with an Adam optimizer 33, utilizing randomly 

chosen samples from each class from the training dataset.  The model was then tested for its 

ability to classify correctly 60 lesions in the test set (10 from each lesion class).  Overall, the 

model’s performance was validated over 20 independent training iterations with different 

groupings of training and test sets, to yield a more accurate assessment. 

 
Table 1: Patient and image characteristics.  The ‘total’ column does not equal the sum of the rows because 
some MRI studies had more than one lesion type.  (SD = standard deviation; adapted from Hamm et al. 28) 

Patient characteristics Cavernous 
hemangioma FNH Cyst ICC CRC 

metastasis HCC Total 

Number of patients 49 53 37 36 39 88 296 

Male 
Female 

17 
32 

8 
45 

19 
18 

18 
18 

27 
12 

67 
21 

155 
141 

Age at imaging 
(mean  ±  SD) 50 ± 11 43 ± 11 62 ± 10 63 ± 14 61 ± 14 63 ± 8 57 ± 14 

Image characteristics        

Number of MRI studies 50 57 42 49 44 96 334 

Number of lesions 82 84 74 58 87 109 494 

Lesion diameter 
(mm, mean ± SD) 

25 
± 11.6 

28.4 
± 20.7 

21.7 
± 15.5 

45 
± 16.8 

26.4 
± 12.3 

24.4 
± 10 

27.5 
± 15.9 

4.4  READER STUDY 

Classification accuracy was compared between the CNN model and two board-certified 

radiologists (with respectively 39 and 7 years of experience), who did not take part in selecting 

the liver lesions used in this study.  The reader study was conducted on an OsiriX MD (v.9.0.1, 



Pixmeo SARL, Switzerland, Geneva) workstation, with several differences as compared with 

an actual clinical setting.  The reader study was performed on an anonymized dataset of 60 

lesions (10 randomly selected from each class), and the radiologists were fully blinded to 

laboratory and clinical data, outcomes, demographics, any prior or follow-up imaging, and to 

any additional MRI sequences.  The randomized test set was generated by using Monte Carlo 

cross-validation.  In order to mimic the radiologists’ “first exposure” to the MRI images and to 

compare their performance to the CNN, results of the reader study were compared after a single 

iteration.  Each radiologist independently classified the same 60 lesions characterized by the 

model in the test dataset using the original three contrast-enhanced MRI phases.  The 

performance of the radiologists was assessed in terms of (i) their ability to distinguish between 

the six liver-lesion types and (ii) their performance in respect of the three broader categories in 

which the application of a DL model to an HCC diagnostic imaging framework is simulated 

(here, LI-RADS; Tab. 2).  The radiologists was instructed not to scroll the image beyond the 

upper and lower edges of the lesion, as this would have risked their noticing any other lesions 

present within the patient’s liver, with the consequent introduction of a possible source of bias.  

The time taken by the radiologist to perform the assessment was noted; this began with the 

opening of the MRI phases and ended with the entry of the radiologist’s classification of the 

lesion. 

 
Table 2: Categories used in the reader study. Category 1, six individual lesion types (one out of six); 
Category 2, three broader categories in accordance to LI-RADS classes (one out of three) 

Category 1: 
Lesion type 

Category 2: 
Broader categories (LI-RADS classes) 

Cysts 
LR-1 (representing benign lesions) Cavernous hemangiomas 

FNHs 

HCCs LR-5 (HCC only) 

ICCs 
LR-M (non-HCC malignancy) 

CRC metastases 

4.5  INTERPRETABILITY OF THE DEEP LEARNING MODEL 

Full details of the technique of DL interpretability used in this study, with its post hoc 

probabilistic approach for analyzing hidden layers of a CNN, have been published 29.  

Therefore, the following section provides only a brief description of this rather technical aspect 

of the study 29. 



A set of fourteen imaging features was identified containing lesion-imaging characteristics that 

are useful for differentiating between various lesion types in T1-weighted triphasic contrast-

enhanced MRI.  For each feature, the training set was searched for hepatic lesions that best 

displayed each feature.  Up to 20 example lesions were selected for each feature; this resulted 

in a total of 224 lesions used across the 14 radiological features.  Also, a test set of 60 lesions 

was labelled with the most clearly dominant imaging features in each image (1-4 features per 

lesion).  In the end, this test set was used for validation of the model’s capabilities in feature 

extraction, and the test set was the same as that used to conduct the reader study described 

above. 

For each radiological feature, ten example lesions were selected randomly from the 224 

example lesions and passed through the CNN system, and the pre-activation outputs of the fully 

connected layer were examined.  By comparing these neuronal outputs among the ten examples, 

each radiological feature was associated with specific patterns in these neurons.  The test image 

was passed through the CNN to obtain its neuronal outputs, which were compared with the 

patterns of neuronal outputs that were associated with each feature.  If the outputs were 

sufficiently similar to a feature’s pattern, the CNN inferred that this feature was present in the 

test image.  The CNN was tested for its ability to identify correctly the radiological features in 

the test set of 60 lesions.  Performance was evaluated in 20 iterations with separately trained 

models using different (though overlapping) choices of the ten example lesions.  The voxels in 

the original image that contributed most to the presence of each feature identified were 

highlighted in feature maps by selecting voxels with the strongest positive correlations with the 

feature (as determined on the basis of the gradient of neurons in the fully connected layer with 

respect to the original image’s voxels).  The relative contribution of each identified feature to 

the classification of the lesion type was also evaluated (based on the Hessian of the objective 

function with respect to training examples that contained the feature of interest 34).  Further 

details of feature identification, mapping and scoring can be found in the supplementary 

information in the publication by Wang et al. 29 and the conference paper of our team 35. 

 

4.6  STATISTICS 

For the main analysis, the performance of the model was evaluated by Monte Carlo cross-

validation, averaging the sensitivity (Sn), specificity (Sp) and overall accuracy over 20 

iterations.  With regard to the validation of the CNN by radiological readings, the performances 

of the model and the radiologists were compared by evaluating their Sn, Sp and overall accuracy 

on the same single randomly selected test set.  In order to compare the model’s and radiologists’ 



performance in identifying HCC masses, a receiver operating characteristic curve was plotted.  

The performance of the model in image-feature extraction and identification was assessed by 

calculating the positive predictive value (PPV), Sn, precision and recall. 

 

5)  RESULTS 

The results of this work have been published in advance 28,29, and copies of the publications are 

attached to this thesis. 

 

5.1  DEEP LEARNING MODEL 

The DL system showed an average test accuracy of 91.9 ± 2.9% (1103/1200) and 94.3% ± 2.9% 

(1131/1200) among individual lesions and across the three broader categories respectively.  The 

initial training of the CNN took 29 ± 4 minutes.  Once the training was completed, the actual 

run time needed to classify each lesion in the test set was 5.6 ± 4.6 milliseconds.  The Sn and 

Sp achieved by the DL system across the six lesion classes as well as for the three LI-RADS-

derived classes is displayed below (Tab. 3).  The overall accuracy and run times of the model 

classification are displayed in the Table 3 of Hamm et al. 28, which is attached to this work.  

The workflow of lesion classification by the CNN is illustrated below (Fig. 1). 

 



Table 3: Model and radiologist performance metrics for individual lesion types and LI-RADS classes.  
(Adapted from Hamm et al. 28) 

 

Average of 20 
iterations Reader study 

Model test set Model Radiologist 1 Radiologist 2 

Sn Sp Sn Sp Sn Sp Sn Sp 

Lesion type 

Cavernous hemangioma 91% 99% 100% 100% 100% 96% 100% 94% 

FNH 91% 98% 90% 96% 90% 98% 90% 94% 

Cyst 99% 100% 100% 100% 90% 96% 100% 98% 

ICC 90% 97% 60% 100% 80% 94% 90% 100% 

CRC metastasis 89% 98% 100% 94% 50% 92% 70% 96% 

HCC 94% 98% 90% 98% 70% 100% 60% 100% 

Overall 92% 98% 90% 98% 80% 96% 85% 97% 

Derived LI-RADS class 

LR-1 
(n = 30) 94% 96% 97% 93% 97% 87% 100% 80% 

LR-5 
(n = 10) 94% 98% 90% 98% 70% 100% 60% 100% 

LR-M 
(n = 20) 95% 96% 95% 100% 85% 93% 85% 98% 

Overall 94% 97% 95% 96% 88% 91% 88% 89% 

 

 
Figure 1: Workflow of lesion classification by the CNN in the example of HCC classification. 

 
 

5.2  READER STUDY 

In the reader study (described above), the lesions could be classified. The model yielded a mean 

accuracy of 90% (55/60 lesions), while the two radiologists assessing the same lesions achieved 

respective accuracies of 80% (48/60) and 85% (51/60). For the three broader categories, the 

model gave an accuracy of 92% (58/60), against an accuracy of 88% (53/60) for each of the 



two radiologists. The Sn and Sp across the six lesion types and three broader categories 

achieved by the CNN and the radiologists in the reader study are given above (Tab. 3). The 

total time required for analyzing each lesion was 0.8 milliseconds for the classification model 

versus 14 ±10 seconds and 17 ±24 seconds for the radiologists.  Additionally, the performance 

of the model in HCC classification was investigated by plotting a receiver operating 

characteristic curve.  The DL system achieved an area under the curve (AUC) of 0.992 with a 

high sensitivity at the cost of a few false positives (Sn = 90%, false-positive rate = 2%; Fig. 4 

in Hamm et al. 28). 

 

5.3  INTERPRETABILITY OF THE DEEP LEARNING MODEL 

A total of 224 annotated images were used across the 14 radiological features, and some images 

were labelled with up to 4 features.  After being presented with a random subset of these 

examples, the model obtained a PPV of 76.5 ± 2.2% (2553/3339) and an Sn of 82.9 ± 2.6% 

(2553/3080) in identifying the 1–4 correct radiological features for the 60 manually labelled 

test lesions over 20 iterations.  The workflow of lesion classification and imaging feature 

identification by the CNN is illustrated below (Fig. 2). 

 
Figure 2: Workflow of lesion classification and imaging-feature extraction by the CNN in the 
example of ICC classification. 

 
 

In its assessment of individual features, the CNN performed best for the simpler enhancement 

patterns.  Presented with 2.6 labelled features on average per lesion, its performance was as 

summarized in Tab. 4.  For simpler image features (e.g. arterial-phase hyperenhancement, 

hyperenhancing mass on delayed phase, thin-walled mass), the CNN’s performance was good; 

for more complex ones (e.g. nodularity, infiltrative appearance) it was less so, and the central-

scar frequency was grossly overestimated, as there was only one such among the 60 lesions in 

the test set. 



Table 4:  Recognition of enhancement pattern by the model over 20 iterations.  The PPV and Sn of six 
example imaging features are shown. 

Overall precision 76.5 ± 2.2% (recall = 82.9 ± 2.6%) 

Misclassified lesions 144/1200 (12%) 

 PPV Sn 

Arterial-phase hyperenhancement  91.2% =  343/376  90.3% =  343/380 

Hyperenhancing mass on delayed phase  93.0% =  160/172  100% =  160/160 

Thin-walled mass  86.5% =  160/185  100% =  160/160 

Nodularity  62.9% =  73/116  60.8% =  73/120 

Infiltrative appearance  33.0% =  36/109  45.0% =  36/80 

Frequency of central scars  32.0% =  16/50  80.0% =  16/20 

All features, misclassified lesions only  56.6% =  259/458  63.8% =  259/406 
 

In classifying the lesion type, the CNN model put greater weight on radiological features that 

appeared more prominent in the image (Fig. 3).  Hyperenhancing mass in delayed phase was a 

clearly observed imaging feature in the cavernous hemangioma example, receiving a relevance 

score of 92%.  Arterial-phase hyper-enhancement was likewise clearly seen in the FNH 

example, and it received a relevance score of 96%.  In some of the features with low relevance 

scores, the feature map was less well defined.  For example, heterogeneous lesion of the ICC 

was assigned a relevance score of 7%, and had a very diffuse feature map.  Further details of 

the mapping of radiological features and their relevance can be found in the supplementary 

material of the study publication attached to this thesis 29. 

 



Figure 3: 2D slices of the feature maps and relevance scores for the examples of cavernous 
hemangioma, FNH and ICC with correctly identified features. 

6) DISCUSSION

This study demonstrates the development of a proof-of-concept “interpretable” deep learning 

system for the classification of liver lesions from multiphase contrast-enhanced MRI.  In 

addition to making high-accuracy predictions, this system was found to be capable of justifying 

its decisions by automatically identifying, mapping and scoring radiological features.  The 

system outperformed radiologists in distinguishing six lesion classes (model accuracy 90%, 

radiologist accuracies 80% and 85%), as well as in classifying lesions into three broader 

categories representing the LI-RADS classes for benign, HCC and malignant non-HCC lesions 

(model accuracy ~92%, radiologist accuracies ~88%), with a classification time of one 

millisecond per lesion. 

Previous studies have demonstrated CNN-based classification of liver lesions on single 

2D imaging slices using CT or US imaging 36-38, and this study builds on these approaches by 

classifying focal liver lesions on the basis of the reference standard of contrast-enhanced MRI. 

The improved soft-tissue contrast resolution inherent to MRI can enable DL systems to capture 

a wider variety of imaging features, contributing to superior diagnostic performance. 

Additionally, the heterogeneity of HCC lesions makes imaging-based diagnosis and staging 



especially challenging 6,39.  A volumetric approach using 3D data sets may lead to improved 

detection of enhancement patterns or inhomogeneous growth that may be relevant for lesion 

classification, while removing the model’s dependence upon manual slice selection (and 

consequent variability) 40.  To take further advantage of available imaging data, the present 

study introduces a DL system that interprets 3D volumes around each lesion.  Moreover, 

previously published studies have laid the foundation for computational classification of hepatic 

lesion types by grouping different lesion entities into three to five classes 36-38. However, when 

future clinical implementation is considered, it is clear that the challenge of classification 

becomes increasingly hard to meet when lesions are not grouped.  For this, more differential 

features must be learned, and the chance of achieving the correct classification decreases.  The 

present study included six ungrouped hepatic lesion types, showing high accuracy (~92%).  As 

anticipated, a higher overall accuracy (~94%) was reached with three grouped classes (LR-1, 

LR-5 and LR-M).  In this case, there is no penalty for mistaking slowly filling cavernous 

hemangiomas for cysts, or for confusing nodular ICCs with CRC metastases.  In addition, the 

heterogeneous imaging protocol (imaging studies from 2010–2017) and the inclusion of 

previously treated lesions demonstrate the robustness of the DL system toward applications 

where inhomogeneous data sets and variable lesion appearances are present. 

As the strength of DL systems become particularly visible when their performance is 

compared with that of experienced clinicians, reader studies have become an established tool 

to investigate their performance and clinical value.  The DL system in this study demonstrated 

a high Sn for CRC metastases and for HCC in comparison with the Sn achieved by radiologists. 

HCCs with faint enhancement or with unclear washout were prone to be misclassified by 

radiologists as CRC metastases or FNHs, respectively.  In contrast, the improved Sn for 

identifying HCCs suggests that the CNN could more reliably utilize yet unknown imaging 

features for classification.  It is of note that the diagnostic accuracy of the radiologists might 

have matched or exceeded the accuracy of the DL system if they had been given access to 

diagnostically relevant clinical information or other imaging sequences.  However, the 

moderate sensitivity and excellent specificity attained for HCC diagnosis by the radiologists in 

the reader study match the results of a recent study investigating the performance of LI-RADS 

for the diagnosis of HCC 41, indicating that radiologists are more likely to miss the diagnosis of 

HCC if classical imaging features are somewhat ambiguous.  As this study only included typical 

HCCs appearing according to the Organ Procurement and Transplantation Network (OPTN) 

criteria, it can be hypothesized that radiologists underestimate imaging features if no clinical 

data are available on the underlying condition. The application of standardized reporting 



systems, such as LI-RADS, is only targeted for an at-risk population presented with cirrhosis, 

chronic hepatitis B virus infection without cirrhosis, or current or prior HCC, including liver 

transplant recipients 42. However, non-alcoholic fatty liver disease (NAFLD) has emerged as 

the leading cause of chronic liver disease in most regions of the world, and it is the fastest-

growing cause of HCC-related transplants in the United States 43,44. Furthermore, among new 

HCC cases without advanced fibrotic liver changes in the United States, NAFLD constitutes 

the largest etiological proportion of cases 43. This entity poses an additional challenge to clinical 

practice paradigms based on HCC risk 43, and it highlights the need for reliable detection and 

extraction of imaging features within the lesion, despite underlying liver conditions which could 

bias the predictions of radiologists. The results of the reader study suggest that DL systems 

may be able to analyze imaging features within a lesion efficiently and possibly even make 

use of lesion characteristics that are unrecognized by the radiologist. 

Good diagnostic performance of the DL system indicates the possibility that CNNs 

can potentially be utilized as a quick and reliable “second opinion” for a radiologist in the 

diagnostic workup of focal liver lesions, helping to reduce inter-reader variability and 

difficulties in interpretation when radiological features are unclear or obscure. However, 

where patient diagnosis and treatment planning is concerned, it is unlikely that clinicians 

will accept an automated assessment if they cannot understand the algorithm’s reasoning. 

The method of scoring radiological features, as presented here, allows the algorithm to 

communicate how it arrives at its conclusion. With this, the referring radiologist can check 

quickly whether the DL system has detected features of the lesion correctly, by comparing 

the feature map with the lesion on the actual MRI image. The radiologist is thereby able to 

verify that detected imaging features correlate with the correct location in the lesion, and to 

exclude predictions based on incorrectly identified imaging features. 

The DL system was able to identify the majority of radiological features consistently, 

despite being provided with only 10 example lesions per class. Nonetheless, this study has 

demonstrated that the CNN had growing difficulty in identifying features correctly as the 

complexity of these features increased. The presence, location, and relevance for classification 

of simple imaging features – such as hypoenhancing or hyperenhancing masses – were 

determined reliably and accurately by the CNN, whereas the model performed worse in lesions 

with imaging features that consisted of patterns over several phases (such as washout or 

centripetal filling). In particular, the model struggled on more complex features, such as 

infiltrative appearance, that may appear quite variable across different lesions, suggesting either 

that more examples of these features are required for training or that these features are not 



sufficiently well defined by the CNN. Even so, there was a clear correlation between the CNN’s 

misclassifications of the lesion entity and its incorrect identification of radiological features.  

This could in the future provide clinicians, research workers and other relevant parties with 

sufficient transparency to make them aware of when – and, importantly, why– the CNN model 

has failed in individual cases. 

As shown in the results on feature relevance (Fig. 3), the model tends to place greater 

weight on imaging features that have greater uniqueness and differential diagnostic power in 

the respective lesion class. The method of scoring the relevance of single imaging features 

enables the interpretable DL system to be utilized as a tool for the validation of imaging 

guidelines, particularly for entities which are uncommon or have evolving imaging criteria, 

such as bi-phenotypic tumors and ICCs 11,45,46. One approach to this might be to present the DL 

system initially with a large set of candidate imaging features. The features with the highest 

relevance scores output by the model would then be selected. This would enable one to find out 

which features have the greatest relevance for members of a given lesion class. This would 

appear to be especially applicable in HCC diagnosis, as the majority of inter-reader studies have 

demonstrated an – at best – moderate level of reliability in determining LI-RADS classes 12-17, 

and the rigidity and complexity of LI-RADS constitutes a major barrier for broad adoption 16,47. 

Recent studies have also highlighted issues regarding the application of LI-RADS 

ancillary features, which are recommended for category adjustment, improved detection, and 

increased confidence in diagnosis 41,48.  However, these features are based primarily upon a 

combination of retrospective single-center studies, on biological plausibility and on expert 

opinion with a somewhat low level of evidence 47,48.  Here again, this problem could be tackled 

with the help of an interpretable DL system; this would allow an approach to the numerous 

ancillary imaging features specified in the LI-RADS guidelines, in that it would provide 

information on the relative importance of the diverse radiological features that go into a 

differential diagnosis. The CNN might, for example, find application in the validation of 

additional ancillary features suggested as being of relevance, and in charting their frequency of 

occurrence by application to a large patient cohort and subsequent analysis of the predictions 

generated by the CNN.  Features found only to have a low frequency, or considered to be of 

little relevance, could thus be considered for exclusion from the LI-RADS guidelines. An 

approach of this kind could be a stepping-stone on the path toward the generation of a protocol 

that could make diagnosis more efficient and more practical in clinical routine 12,16. 

Furthermore, the interpretable DL system classified lesions reliably as being ‘benign’, ‘HCC’ 

or ‘malignant non-HCC’ (roughly corresponding to LR-1, LR-5 and LR-M, respectively) with 



an accuracy of 94.3%. This DL model could interface with standardized reporting systems by 

the calculation of an average probability of the finding ‘HCC’ based on the model’s prediction 

and the diagnosis by the radiologist, in order to score lesions that are suspicious for HCC but 

that lack a definite benign or malignant appearance (i.e. LR-2/3/4).  Such shared decision-

making would help address the recently indicated need for simplification of LI-RADS in order 

to integrate it into the radiologist’s normal workflow 47. 

The clinical management of patients with liver malignancies depends greatly on 

radiology reports, which may include vague descriptions and may depend substantially on the 

experience of the referring radiologist.  In a DL system-supported diagnosis, the radiologist 

could use data on lesion classification and extracted imaging features provided by the DL 

system, thus supporting his subjective interpretation by adducing quantitative data, as the 

training of DL systems generally comprises several hundred exemplary lesions.  In addition, 

once the DL system has reached high accuracy levels, it analyses any lesion presented according 

to a predefined algorithm.  Thus DL systems can contribute with quantitative data to more 

evidence-based radiology reports, leading to higher reproducibility and diagnostic confidence. 

As opposed to many other malignancies, HCC incidence rates continue to rise 49, which may 

be expected to result in a continued trend of increasing imaging volumes, requiring more rapid 

and more reliable techniques for detecting and diagnosing HCC.  In addition, emerging risk 

factors such as NAFLD, diabetes and obesity may challenge the present-day diagnostic 

frameworks for HCC 43.  Highlighted by the high accuracy in lesion classification and 

extracted imaging features supporting the prediction, DL systems could support 

radiologists with reproducible quantitative data and thereby help clinicians to diagnose focal 

liver lesions earlier and with greater confidence. 

As the present study was designed as a proof-of-concept study, there are several 

limitations that a future multi-center study should address before clinical integration of DL can 

be considered.  As this was a retrospective single-center investigation, only a limited number 

of imaging studies were available for each class.  Thus, only lesions with typical appearance in 

MRI were used, excluding more complex lesions such as infiltrative HCC subtypes or 

complicated cysts.  Additionally, LI-RADS is only applicable to patients at high risk of HCC, 

and this study included many lesions in livers without cirrhosis or hepatitis B viral infection, so 

that the results do not necessarily reflect “real life” performance within an HCC diagnostic 

framework.  Because diagnoses such as FNH or CRC metastasis are much less common in 

cirrhotic livers, limiting the cohort to cirrhotic patients would have severely reduced the dataset. 

Yet, as mentioned above, NAFLD is the fastest-growing cause of HCC-related transplantation 



in the United States and constitutes the largest etiological proportion of cases among new HCC 

cases without advanced fibrosis or cirrhosis 43, suggesting that the current LI-RADS diagnostic 

framework will have to be adjusted. Additionally, as this was a retrospective study, with data 

from a limited number of patients at a single institution, the requisite pathological “ground 

truth” diagnosis was only available for a restricted number of the study lesions. Thus, this study 

used only lesions of “typical” appearance, and “ground truth” criteria were carefully selected 

and defined (Tab. S1 in Hamm et al. 28).  In the case of lesions for which no pathological 

diagnosis was available, this was replaced by the result of an analysis covering all the 

accessible image material (T1 pre-contrast, T2 etc.) and all the available clinical data.  

However, this additional image material was not used in the model training or in the reader 

study.  Therefore, their contribution to the CNN model’s performance will have to be assessed 

in further studies. A further limitation of this study was that the readers had no access to 

additional information such as clinical data, knowledge of disease progression, or evidence of 

prior surgery, which a radiologist would utilize in daily practice.  Therefore, for such 

lesions, it is not unreasonable for discrepancies to occur in this study between the 

“ground truth” and the reader’s classification.  In the context of these limitations, this 

approach and selected reference standards were appropriate for the study’s purposes of 

developing a proof-of-concept prototype from available data at a single large academic 

medical center.  Furthermore, there is no established ground truth for describing feature 

maps or relevance.  Therefore, future studies will be designed to demonstrate similar 

functionality using different choices of radiological features and lesion types, also taking 

into account the reproducibility of such techniques under different DL models.  These 

limitations should be addressed in the future through progressive refinements with 

multi-institutional data registries, utilizing larger and more diverse input data and a more 

complex CNN model capable of analyzing other types of MRI sequences. 

7) CONCLUSION

In summary, this study presents the development of an “interpretable” DL 

system prototype that exceeds the accuracy of radiologists in classifying hepatic 

lesions in contrast-enhanced MRI, while allowing insight into the algorithm’s decision-

making.  As comprehensibility and transparency are key barriers towards the practical 

integration of DL in clinical practice 50, the interpretable DL system presented here 

demonstrates its potential as a decision-support tool in liver lesion diagnosis; however, the 

clinical impact of the decision-support tool needs to be validated in a prospective study 

before it can be considered for integration into clinical practice. 



8) ENGLISH ABSTRACT

Objectives 

The purpose of this study was (i) to develop an interpretable deep learning system, of high 

accuracy, for classifying hepatic lesions in contrast-enhanced MRI, with a transparency that 

allows justification of its decisions to physicians and (ii) to validate this system by comparison 

of its diagnostic performance with that of radiologists. 

Methods 

This study included 296 patients with 494 hepatic lesions in six categories.  Lesions were 

identified by multiphasic MRI and divided into training (n=434) and test (n=60) sets. 

Established image augmentation techniques were used to increase the number of training 

samples to 43,400.  This training set was input to a custom-made convolutional neural network 

(CNN), consisting of three convolutional layers with associated rectified linear units, two 

maximum pooling layers, and two fully connected layers.  An Adam optimizer was used for 

model training.  Additionally, up to four key imaging features per lesion were assigned to a 

subset of each lesion class and a post-hoc algorithm was used to infer the presence of these 

features in a test set on the basis of activation patterns of the (trained) CNN model. Validation 

of the CNN was performed by comparing the diagnostic performance of the CNN with that of 

two board-certified radiologists.  This was carried out by Monte Carlo cross-validation, and the 

CNN’s performance on an identical unseen test set was compared with that of the radiologists. 

Feature maps highlighting regions in the original image that corresponded to particular features 

were generated.  A relevance score was then assigned to each feature identified, denoting the 

relative importance of the feature for the predicted lesion classification. 

Results 

The interpretable deep learning (DL) system demonstrated a 92% sensitivity (Sn), a 98% 

specificity (Sp), and a 92% accuracy.  Test set performance in a single run showed an average 

90% Sn and 98% Sp across the six lesion types, compared with an average 82.5% Sn and 96.5% 

Sp for radiologists, respectively.  Radiologists achieved an Sn of 60%–70% for classifying 

hepatocellular carcinoma, while the DL system achieved an Sn of 90%.  For the specific case 

of HCC classification the CNN achieved a receiver operating characteristic area under the curve 

of 0.992.  Computation time per lesion was 5.6 milliseconds. 



The positive predictive value and the Sn in identifying the correct radiological features present 

in each test lesion were 76.5% and 82.9%, respectively, while 12% of the lesions were 

misclassified; these misclassified lesions led more often to wrongly identified features than the 

correctly classified ones did (60.4% vs. 85.6%).  Original image voxels contributing to each 

imaging feature were consistent with the feature maps generated, and in each class the most 

prominent imaging criteria were reflected by their respective feature relevance scores. 

Conclusion 

This study presents the development of an “interpretable” DL system prototype, the accuracy 

of which exceeds that of radiologists in classifying hepatic lesions on contrast-enhanced 

MRI, while illuminating the algorithm’s decision-making.  The interpretable DL system 

presented demonstrates potential as a decision-support tool in liver lesion diagnosis; 

however, the clinical impact of the decision-support tool needs to be validated in a prospective 

study before the tool can be considered for integration into clinical practice. 

9) POLISH ABSTRACT

Cele 

Celami tego badania było: 

(i) opracowanie wysokiej dokładności systemu głębokiego uczenia się do oceny i

klasyfikacji zmian w wątrobie przy pomocy rezonansu magnetycznego z

kontrastem, z możliwością oceny podjętej decyzji przez lekarza oraz,

(ii) walidacja tego systemu przez porównanie jego wyników diagnostycznych z

wynikami uzyskanymi przez lekarzy radiologów.

Metody 

Badanie objęło 296 pacjentów z 494 zmianami chorobowymi wątroby podzielonymi na sześć 

kategorii. Zmiany zostały zidentyfikowane za pomocą wielofazowego MRI i podzielone na 

zestawy treningowe (n=434) i testowe (n=60). Dostępne techniki multiplikacji obrazu zostały 

wykorzystane w celu zwiększenia liczby próbek szkoleniowych do 43 400. Ten zestaw 

szkoleniowy wprowadzono do stworzonej na zamówienie sieci neuronów konwulsyjnych 

(CNN), składającej się z trzech warstw konwulsyjnych z powiązanymi prostymi jednostkami 

liniowymi, dwóch maksymalnych warstw zbiorczych oraz dwóch w pełni połączonych warstw. 

Optymalizator Adama został użyty w celu szkolenia. Maksymalnie cztery kluczowe cechy na 

każdą zmianę chorobową zostały przypisane do podzbioru każdej klasy zmiany, dodatkowo 



zastosowano algorytm post-hoc do wnioskowania o obecności tych cech w zestawie testowym 

na podstawie wzorów aktywacji (wytrenowanego) modelu CNN. Walidacja CNN została 

przeprowadzona poprzez porównanie wyników diagnostycznych CNN z wynikami dwóch 

specjalistów radiologii. Zostało to przeprowadzone w ramach walidacji krzyżowej Monte 

Carlo, a wyniki CNN na identycznym, niewidocznym zestawie testowym zostały porównane z 

wynikami radiologów. Wygenerowane zostały mapy cech wyróżniające regiony na 

oryginalnym obrazie, które odpowiadały poszczególnym cechom. Następnie do każdej 

zidentyfikowanej cechy przypisano ocenę istotności, oznaczającą względne znaczenie danej 

cechy dla przewidywanej klasyfikacji zmiany. 

 

Wyniki 

Interpretowalny system głębokiego uczenia się (DL) wykazał 92% czułości (Sn), 98% 

specyficzności (Sp) i 92% dokładności. Wydajność zestawu testowego w pojedynczym badaniu 

wykazała średnio 90% Sn i 98% Sp w sześciu typach zmian, w porównaniu do średnio 82,5% 

Sn i 96,5% Sp dla radiologów. Radiolodzy uzyskali Sn na poziomie 60%-70% do klasyfikacji 

raka wątrobowokomórkowego, natomiast system DL uzyskał Sn na poziomie 90%. Dla 

szczególnego przypadku klasyfikacji HCC CNN uzyskał obszar charakterystyki pracy pod 

krzywą 0,992. Czas obliczeniowy na jedną zmianę wynosił 5,6 milisekundy. 

Dodatnia wartość predykcyjna i Sn w identyfikacji prawidłowych cech radiologicznych 

występujących w każdej badanej zmianie wynosiły odpowiednio 76,5% i 82,9%, podczas gdy 

12% zmian było źle sklasyfikowanych; te źle sklasyfikowane zmiany częściej prowadziły do 

błędnej identyfikacji cech niż prawidłowo sklasyfikowane (60,4% vs 85,6%). Oryginalne 

woksle obrazowe przyczyniające się do każdej funkcji obrazowania były spójne z 

wygenerowanymi mapami cech, a w każdej klasie najbardziej znaczące kryteria obrazowania 

były odzwierciedlone przez ich odpowiednie oceny istotności cech. 

 

Wniosek 

W pracy przedstawiono rozwój "interpretowalnego" prototypu systemu głębokiego uczenia się, 

którego dokładność przewyższa dokładność radiologów w klasyfikowaniu zmian w wątrobie 

na MRI wzmocnionym kontrastem, przy jednoczesnym oświetleniu procesu podejmowania 

decyzji przez algorytm. Przedstawiony interpretacyjny system DL wykazuje potencjał jako 

narzędzie wspomagające podejmowanie decyzji w diagnostyce zmian chorobowych w 

wątrobie; jednakże wpływ kliniczny narzędzia wspomagającego podejmowanie decyzji musi 



być zweryfikowany w badaniu prospektywnym, zanim będzie można rozważyć jego włączenie 

do praktyki klinicznej. 
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Abstract
Objectives To develop and validate a proof-of-concept convolutional neural network (CNN)–based deep learning system (DLS)
that classifies common hepatic lesions on multi-phasic MRI.
Methods A custom CNN was engineered by iteratively optimizing the network architecture and training cases, finally
consisting of three convolutional layers with associated rectified linear units, two maximum pooling layers, and two
fully connected layers. Four hundred ninety-four hepatic lesions with typical imaging features from six categories were
utilized, divided into training (n = 434) and test (n = 60) sets. Established augmentation techniques were used to
generate 43,400 training samples. An Adam optimizer was used for training. Monte Carlo cross-validation was
performed. After model engineering was finalized, classification accuracy for the final CNN was compared with
two board-certified radiologists on an identical unseen test set.
Results The DLS demonstrated a 92% accuracy, a 92% sensitivity (Sn), and a 98% specificity (Sp). Test set perfor-
mance in a single run of random unseen cases showed an average 90% Sn and 98% Sp. The average Sn/Sp on these
same cases for radiologists was 82.5%/96.5%. Results showed a 90% Sn for classifying hepatocellular carcinoma
(HCC) compared to 60%/70% for radiologists. For HCC classification, the true positive and false positive rates were
93.5% and 1.6%, respectively, with a receiver operating characteristic area under the curve of 0.992. Computation time
per lesion was 5.6 ms.
Conclusion This preliminary deep learning study demonstrated feasibility for classifying lesions with typical imaging features
from six common hepatic lesion types, motivating future studies with larger multi-institutional datasets and more complex
imaging appearances.
Key Points
• Deep learning demonstrates high performance in the classification of liver lesions on volumetric multi-phasic MRI,
showing potential as an eventual decision-support tool for radiologists.

• Demonstrating a classification runtime of a few milliseconds per lesion, a deep learning system could be incorporated into the
clinical workflow in a time-efficient manner.
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Abbreviations
CNN Convolutional neural network
CRC Colorectal carcinoma
DL Deep learning
DLS Deep learning system
FNH Focal nodular hyperplasia
HCC Hepatocellular carcinoma
ICC Intrahepatic cholangiocarcinoma
LI-RADS Liver Imaging Reporting and Data System
PACS Picture archiving and communication system
Sn Sensitivity
Sp Specificity

Introduction

Liver cancer is the second leading cause of cancer-related
deaths worldwide and hepatocellular carcinoma (HCC) repre-
sents the most common primary liver cancer [1, 2]. Contrary
to many other cancer types, HCC incidence rates continue to
rise [3]. Rapid and reliable detection and diagnosis of HCC
may allow for earlier treatment onset and better outcomes for
these patients. As the availability and quality of cross-
sectional imaging have improved, the need for invasive diag-
nostic biopsies has decreased, propelling imaging-based diag-
nosis to a more central role, with a unique status especially for
primary liver cancer. However, the radiological diagnosis of
potentially malignant hepatic lesions remains a challenging
task. In this setting, standardized image analysis and reporting
frameworks such as the Liver Imaging Reporting and Data
System (LI-RADS) can improve radiological diagnosis by
reducing imaging interpretation variability, improving com-
munication with referring physicians, and facilitating quality
assurance and research [4]. However, the increasing complex-
ity of LI-RADS has made its implementation less feasible in a
high-volume practice, leaving an unmet clinical need for com-
putational decision-support tools to improve workflow
efficiency.

Machine learning algorithms have achieved excellent per-
formance in the radiological classification of various diseases
and may potentially address this gap [5–7]. In particular, a
deep learning system (DLS) based on convolutional neural
networks (CNNs) can attain such capabilities after being
shown imaging examples with and without the disease.
Unlike other machine learning methods, CNNs do not require
definition of specific radiological features to learn how to
interpret images, and they may even discover additional dif-
ferential features not yet identified in current radiological
practice [8]. However, such capabilities have not yet been
fully demonstrated in the realm of HCC imaging. Most prior
machine learning studies classified liver lesions on 2D CT
slices and ultrasound images [9–14]. However, higher perfor-
mance may be achieved with a model that analyzes 3D

volumes of multi-phasic contrast-enhanced MRI, which is
the reference standard for image-based diagnosis.

Therefore, this study aimed to develop a preliminary CNN-
based DLS that demonstrates proof-of-concept for classifying
six common types of hepatic lesions with typical imaging
appearances on contrast-enhanced MRI, and to validate per-
formance with comparison to experienced board-certified
radiologists.

Materials and methods

This was a single-center engineering development and valida-
tion study compliant with the Health Insurance Portability and
Accountability Act and the Standards for Reporting of
Diagnostic Accuracy guidelines. The study was approved by
the institutional review board and informed consent was
waived. The two components of the study involved (1) engi-
neering a CNN-based liver tumor classifier, followed by (2)
proof-of-concept validation of the final optimized CNN by
comparison with board-certified radiologists on an identical
unseen dataset. An overview of the model training and vali-
dation portions is illustrated in Fig. 1.

Establishment of Bground truth^ cases

A medical student (CH) searched the picture archiving
and communication system (PACS) for abdominal MRI
examinations between 2010 and 2017 depicting one of
the following hepatic lesions: simple cyst, cavernous
hemangioma, focal nodular hyperplasia (FNH), HCC,
intrahepatic cholangiocarcinoma (ICC), and colorectal
cancer (CRC) metastasis. Due to the nature of a single-
institution investigation with limited availability of path-
ological proof, lesions were restricted to those displaying
typical imaging features, incorporating clinical criteria to
maximize the certainty of definite diagnosis. Table S1
contains the selected criteria for the Bground truth^ uti-
lized for each lesion type. Diagnosed lesions formally
described by radiology faculty on official reports were
double-checked post hoc according to these criteria with
another radiological reader (BL), and lesions were ex-
cluded if they contained discrepancies or displayed poor
image quality. Up to three imaging studies per patient
were included as long as studies were more than
3 months apart. Up to nine different lesions were used
in each study. The majority of included lesions were
untreated; treated lesions were only included if the se-
lected lesion showed progression, or the patient
underwent loco-regional therapy more than 1 year ago
and now presented with residual tumor. Patients younger
than 18 years were excluded.
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MRI acquisition protocol

This study involvedMRI examinations performed from 2010 to
2017 available throughout the institutional PACS, designed to
include a heterogeneous collection of MRI scanners and imag-
ing studies. This incorporated both 1.5-T and 3-T MR scanners,
including Siemens Aera, Espree, Verio, Avanto, Skyra, and Trio
Tim and GEDiscovery and Signa Excite scanners. Multi-phasic
contrast-enhanced T1-weighted breath-hold sequences from
standard institutional liver MR imaging protocols were used
with acquisition times of 12–18 s. Several different
gadolinium-based contrast agents were used (dosed at
0.1 mmol/kg), including Dotarem (Guerbet), Gadavist (Bayer),
Magnevist (Bayer), ProHance (Bracco Diagnostics), and
Optimark (Covidien). Post-contrast images were analyzed, in-
cluding late arterial phase (~ 20 s post-injection), portal venous
phase (~ 70 s post-injection), and delayed venous phase (~ 3min
post-injection). Imaging parameters varied across different scan-
ners and time frames; however, the majority were in the range of
TR 3–5 ms, TE 1–2 ms, flip angle 9–13°, bandwidth 300–
500 Hz, slice thickness 3–4 mm, image matrix 256 × 132 to
320 × 216, and field-of-view 300 × 200 mm to 500 × 400 mm.

Image processing

Eligible MRI studies were downloaded from the PACS and
stored as DICOM files. The location and size of a 3D bounding
box around the target lesion were manually recorded on the x-,

y-, and z-axis. The images were processed and automatically
cropped to show only the lesion of interest using code written
in the programming language Python 3.5 (Python Software
Foundation). The cropped image was then resampled to a reso-
lution of 24 × 24 × 12 voxels (Fig. 2). To minimize bias field
effects, cropped images were normalized to intensity levels from
− 1 to 1. Affine registration with a mutual information metric
was used to register portal venous and delayed phase MRI stud-
ies to the arterial phase. Ten lesions from each class were ran-
domly selected to comprise the test set (12% of the entire
dataset) using Monte Carlo cross-validation and the remaining
lesions comprised the training set. Each image in the training set
was augmented by a factor of 100 using established techniques
[15] to increase the number of training samples, which allows
the model to learn imaging features that are invariant to rotation
or translation. During augmentation, images randomly
underwent rotation, translation, scaling, flipping, interphase
translation, intensity scaling, and intensity shifting.

Deep learning model development

The CNN model was trained on a GeForce GTX 1060
(NVIDIA) graphics processing unit. The model was built
using Python 3.5 and Keras 2.2 (https://keras.io/) [16]
running on a Tensorflow backend (Google, https://www.
tensorflow.org/). Model engineering consisted of iteratively
adjusting the network architecture (number of convolutional
layers, pooling layers, fully connected layers, and filters for

Fig. 1 Flowchart of the lesion classification approach, including model training, model testing, and reader study
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each layer, along with parameter optimization) and training
cases (removing cases with poor imaging quality or
ambiguous imaging features and increasing the number of
training samples for lesion classes demonstrating lower
performance). The final CNN consisted of three
convolutional layers, where the first layer had 64
convolutional filters for each of the three phases in the
original image, and the other two had 128 filters across all
phases. Each filter generated filtered images by convolving
voxels in 3 × 3 × 2 blocks. The model also contained two
maximum pooling layers (size 2 × 2 × 2 and 2 × 2 × 1
respectively), which reduce the resolution of filtered images
to provide spatial invariance (i.e., a feature that is shifted by a
voxel can still be represented by the same neuron, which
facilitates learning). The final CNN contained two fully
connected layers, one with 100 neurons and the second with
a softmax output to six categories that corresponded to the
lesion types (Fig. 3). The selected imaging studies spanned
296 patients (155 male/141 female) (Table 1). A total of 334
imaging studies were selected, with a combined total of 494
lesions (74 cysts, 82 cavernous hemangiomas, 84 FNHs, 109
HCCs, 58 ICCs, 87 CRC metastases). The average diameter
of all lesions used was 27.5 ± 15.9 mm, ranging from 21.7 ±
15.5 mm for simple cysts to 45 ± 16.8 mm for ICCs (Table 2).
The CNN used rectified linear units after each convolutional
layer and the first fully connected layer, which helps the model
to learn non-linear features [15]. These are used in conjunction

with batch normalization and dropout, which are regulariza-
tion techniques that help the model to generalize beyond the
training data [17]. Each CNN was trained with an Adam op-
timizer using minibatches of five samples from each lesion
class. Hyperparameters were chosen via an exhaustive search
through a manually specified portion of the search, an ap-
proach known in the literature as a grid search [18]. Samples
were chosen randomly from the augmented dataset. The mod-
el was then tested on its ability to correctly classify 60 lesions
in the test dataset (10 from each lesion class) and performance
was averaged over 20 independent training iterations with
different groupings of training and test datasets to gain a more
accurate assessment.

Reader study validation

After development of the CNNmodel was complete, the clas-
sification accuracy of the final CNN was compared with two
board-certified radiologists, using an identical set of randomly
selected lesions that were unseen by either the CNN model or
the radiologists. The two radiologists (39 and 7 years of expe-
rience) did not take part in the model training process and
were blinded to the lesion selection. The reader study was
conducted on an OsiriX MD (v.9.0.1, Pixmeo SARL) work-
station. To provide even comparison of input data available to
the CNN model, the simulated ready study contained several
differences compared to actual clinical practice. The imaging

Fig. 2 Sample images of lesion classes and corresponding derived LI-RADS categories. Boxes indicate the cropping of each lesion, which adds padding
to the lesion coordinates as determined by a radiologist. The model was able to overcome extrahepatic tissues such as the kidney
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studies were anonymized, and the radiologists were fully
blinded to clinical data as well as MRI sequences not utilized
for the CNN training. The test set for the reader study
consisted of 10 randomly selected lesions of each class, 60
lesions in total, while the remaining lesions were assigned to
the training set. The randomization was based onMonte Carlo
cross-validation and the results of the reader study were com-
pared after a single iteration to mimic their Bfirst exposure^ to
the images. Each radiologist independently classified the 60
lesions characterized by the model in the test set based on the
original three contrast-enhanced MRI phases (late arterial,

portal venous, and delayed/equilibrium). Their performance
was evaluated in distinguishing the six lesion entities as well
as three broader categories that simulate the application of a
deep learning model to an HCC diagnostic imaging frame-
w o r k s u c h a s L I - RADS . T h e t h r e e b r o a d e r
derived categories were HCCs (corresponding to LR-5), be-
nign lesions (grouping cysts, hemangiomas, and FNHs, cor-
responding to LR-1), and malignant non-HCC lesions (group-
ing ICCs and CRC metastases, corresponding to LR-M). The
radiologists did not scroll any further than the superior and
inferior margins of the lesion in order to avoid revealing

Fig. 3 Neural network model
architecture used to infer the
lesion entity based on the input
image, shown for an example of
intrahepatic cholangiocarcinoma.
The derived LI-RADS
classification follows from the
lesion class
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possible other lesions within the liver and thereby biasing the
read. The time from opening the MRI phases until classifica-
tion of the lesion was recorded.

Statistics

The performance of the model was evaluated by averaging the
sensitivity, specificity, and overall accuracy over 20 iterations,
as described above. For validation of the CNN with radiolog-
ical readings, the performances of both the model and the
radiologists were computed by evaluating sensitivity, specific-
ity, and overall accuracy on the same single randomly selected
test set of unseen cases. Prevalence-based parameters such as
positive predictive value and negative predictive value were
not applicable for this study. A receiver operating characteris-
tic curve was plotted to compare the model and radiologist
performance in identifying HCC masses.

Results

Deep learning model

The final CNN demonstrated a training accuracy of 98.7% ±
1.0 (8567/8680 volumetric samples) across six lesion types
and 99.1% ± 0.7 (8602/8680) according to the three general
derived LI-RADS categories (Table 3). The average test

accuracy was 91.9% ± 2.9 (1103/1200) among individual le-
sions and 94.3% ± 2.9 (1131/1200) across the three broader
categories. The time to initially train the DLS was 29 ± 4 min.
Once the model was trained, the actual runtime to classify
each lesion in the test dataset was 5.6 ± 4.6 ms.

For the 20 iterations, the average model sensitivity across
the six lesion types was 92%, with an average specificity of
98% (Table 4). The model sensitivity for individual lesion
types ranged from 89% (177/200) for CRC metastases to
99% (197/200) for simple cysts (Table 4). The corresponding
model specificity for individual lesions ranged from 97%
(965/1000) for ICC to 100% (1000/1000) for simple cysts.
HCC lesions demonstrated a sensitivity of 94% (187/200)
and specificity of 98% (984/1000). For the case of the three
broader categories, the sensitivity ranged from 94% (187/200
for HCC, 563/600 for benign lesions) to 95% (381/400 for
malignant non-HCC lesions). The corresponding specificity
ranged from 96% (770/800 for malignant non-HCC lesions,
and 577/600 for benign lesions) to 98% (984/1000 for HCC).
The study was conducted using the same number of lesions
from each class, and thus does not reflect the actual prevalence
of each lesion type.

Reader study

Classification of unseen randomly selected lesions included in
the reader study demonstrated an average model accuracy of

Table 1 Patient characteristics and demographics. Total column does not equal the sum of the rows because some patients had multiple lesion types

Patient characteristics Cyst Cavernous hemangioma FNH HCC ICC CRC metastasis Total

Number of patients 37 49 53 88 36 39 296

Age at imaging (mean ± SD) 62 ± 10 50 ± 11 43 ± 11 63 ± 8 63 ± 14 61 ± 14 57 ± 14

Gender

Male 19 17 8 67 18 27 155

Female 18 32 45 21 18 12 141

Ethnicity

Caucasian 29 39 34 50 25 32 206

African American 2 3 11 12 3 2 32

Asian 3 0 0 3 1 0 5

Other 0 3 2 12 3 4 24

Unknown 3 4 6 11 4 1 29

Table 2 Imaging details for each category of lesion

Image characteristics Cyst Cavernous hemangioma FNH HCC ICC CRC metastasis Total

Number of patients 37 49 53 88 36 39 296

Number of imaging studies 42 50 57 96 49 44 334

Number of lesions 74 82 84 109 58 87 494

Lesion diameter (mm, mean ± SD) 21.7 ± 15.5 25 ± 11.6 28.4 ± 20.7 24.4 ± 10 45 ± 16.8 26.4 ± 12.3 27.5 ± 15.9

Total column does not equal the sum of the rows because some imaging studies had multiple lesion types
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90% (55/60 lesions). Radiologist accuracy was 80% (48/60)
and 85% (51/60) on these same lesions, respectively (Table 3).
The model accuracy for the three broader categories was 92%
(58/60), compared with 88% (53/60) for both radiologists.
The total elapsed time analyzing each lesion was 0.8 ms for
the classification model versus 14 ± 10 s and 17 ± 24 s for the
radiologists.

Lesions included in the reader study showed an average
CNN model sensitivity of 90% ± 14 (9/10) and specificity of
98% ± 2 (49/50) across the six lesion types. This compared to
an average sensitivity of 80% ± 16 (8/10) and 85% ± 15 (8.5/
10) and specificity of 96% ± 3 (48/50) 97% ± 3 (48.5/50) for
the two radiologists respectively (Table 4). The model sensi-
tivity ranged from 70% (7/10 for FNH) to 100% (10/10 for
simple cysts and hemangiomas) with a specificity ranging
from 92% (46/50 for HCC) to 100% (50/50 for simple cysts,
hemangiomas, and ICC). Radiologist sensitivity ranged from
50% (5/10 for CRC metastases) to 100% (10/10 for simple
cysts, hemangiomas), with specificity ranging from 92% (46/

50 for CRC metastases) to 100% (50/50 for HCC and ICC).
The average model sensitivity for three broader categories was
92% with a specificity of 97%. This compared to the radiolo-
gists’ sensitivity of 88% and specificity of 89% and 91%,
respectively. The model demonstrated highest sensitivity for
malignant non-HCC lesions at 95% (19/20) compared to 85%
(17/20) for both radiologists, whereas radiologists attained
highest sensitivity for benign lesions at 97% (29/30) and
100% (30/30), compared to 90% (27/30) for the CNN.

A receiver operating characteristic curve was constructed
by varying the probability threshold at which the CNN would
classify a lesion as HCC, with an area under the curve of 0.992
(Fig. 4). This included a true positive rate of 93.5% (187/200)
averaged over 20 iterations and a false positive rate of 1.6%
(16/1000). When including only lesions within the reader
study, the model true positive rate was 90% (9/10), and the
false positive rate was 2% (1/50). Radiologists had a true
positive rate of 60% and 70% (6/10 and 7/10, respectively)
and a false positive rate of 0% (0/50).

Table 4 Model and radiologist performance metrics for individual lesion types and LI-RADS classes

Average of 20 iterations Reader study

Model test set Model Radiologist 1 Radiologist 2

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Lesion type

Cyst 99% 100% 100% 100% 90% 96% 100% 98%

Hemangioma 91% 99% 100% 100% 100% 96% 100% 94%

FNH 91% 98% 90% 96% 90% 98% 90% 94%

HCC 94% 98% 90% 98% 70% 100% 60% 100%

ICC 90% 97% 60% 100% 80% 94% 90% 100%

CRC metastasis 89% 98% 100% 94% 50% 92% 70% 96%

Overall 92% 98% 90% 98% 80% 96% 85% 97%

Derived LI-RADS class

LR-1 (n = 30) 94% 96% 97% 93% 97% 87% 100% 80%

LR-5 (n = 10) 94% 98% 90% 98% 70% 100% 60% 100%

LR-M (n = 20) 95% 96% 95% 100% 85% 93% 85% 98%

Overall 94% 97% 95% 96% 88% 91% 88% 89%

Table 3 Overall accuracy and
runtimes for model classification
and classification by two
radiologists

Accuracy of lesion
classification
(mean ± SD %)

Accuracy of derived LI-RADS
classification
(mean ± SD %)

Runtime (mean ± SD)

Average of 20 iterations

Model training set 98.7 ± 1.0 99.1 ± 0.7 29 min ± 4

Model test set 91.9 ± 2.9 94.3 ± 2.9 5.6 ms ± 4.6

Reader study (n = 60)

Model 90.0 91.7 1.0 ms ± 0.4

Radiologist 1 80.0 88.3 14 ± 10 s

Radiologist 2 85.0 88.3 17 ± 24 s
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Discussion

This study demonstrates a deep learning–based prototype for
classification of liver lesions with typical imaging features
from multi-phasic MRI, demonstrating high performance
and time efficiency. While the study did not simulate clinical
practice conditions, comparison with equivalent data input
showed the potential of DL systems to eventually aid in im-
proving radiological diagnosis of six classes of hepatic lesions
(model accuracy of 92%, radiologist accuracy of 80% and
85%), as well as three broader categories of benign, HCC,
and malignant non-HCC lesions (model accuracy of 94%,
radiologist accuracy of 88%), with a classification time of
5.6 ms per lesion.

Building upon prior 2D CT and ultrasound models, the
inherent improved soft tissue contrast resolution of MRI can
enable this CNN to capture a wider variety of imaging features
[14]. Additionally, the 3D volumetric approach may improve
detection of inhomogeneous growth or enhancement patterns
that may be relevant to lesion classification, while removing
the model’s variability and dependence on manual slice selec-
tion [19, 20]. Furthermore, the use of heterogeneous imaging
sources demonstrated the robustness of DLS in the setting of
different MRI scanners and acquisition protocols.

Previous studies have paved the way for computational
classification of diverse lesion types by grouping hepatic le-
sion entities into three to five classes [11, 13, 14]. Moving
towards clinical implementation, classification becomes in-
creasingly challenging when lesions are ungrouped and single
entities are differentiated. In this case, a higher number of
differential features must be learned with a lower chance of
guessing correctly. The present study included six ungrouped
lesion classes, demonstrating a high accuracy level of 91.9%.

As expected, the overall accuracy was higher with three
grouped classes (94.3%).

Since single-center developmental efforts often suffer from
limited datasets, selection of idealized cases is often necessary,
making the interpretation of classification results ambiguous.
The direct comparison between the DLS and two radiologists
allows for better interpretation of performance and potential
clinical value. High sensitivity for HCC and CRC metastases
was demonstrated relative to radiologists. The radiologists
tended to misclassify HCCs with faint enhancement as CRC
metastases and HCCs with unclear washout as FNHs, whereas
the DLS could more reliably make use of other features to
correctly identify the HCCs. Similarly, radiologists
misclassified CRC metastases without clear progressive en-
hancement with cysts, and those with heterogeneous, nodular
appearances were misclassified for ICCs, whereas the compu-
tational predictions were likely more robust to the absence of
these features. Still, the radiologists’ diagnostic accuracy may
have matched or exceeded the DLS’s accuracy if given access
to clinical information or additional imaging sequences. As a
proof-of-concept study with limited sequences, this simulated
environment provided unbiased comparison between the DLS
and radiologists with the same available input data.

These performance metrics suggest that a DLS could serve
as a quick and reliable Bsecond opinion^ for radiologists in the
diagnosis of hepatic lesions, helping to reduce interpretation
difficulty and inter-reader variability when imaging features
are more ambiguous. In HCC diagnosis, most inter-reader
studies demonstrated a moderate level of reliability in deter-
mining LI-RADS classes [21–26], and the rigor and complex-
ity of LI-RADS constitutes a major barrier for broad adoption
[25, 27]. The DLS classified lesions into benign, HCC, and
malignant non-HCC lesions (roughly corresponding to LR-1,

Fig. 4 Model receiver operating
characteristic curve for
distinguishing HCCs. This model
achieves high sensitivity for HCC
at the cost of a few false positives.
AUC, area under curve
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LR-5, and LR-M respectively) with an accuracy of 94.3%.
While this is a preliminary feasibility study with many limita-
tions, it suggests that a DLS could potentially interface with
LI-RADS, for example, by averaging the model and radiolo-
gist predictions to score lesions that are suspicious for HCC
but lack a definite benign/malignant appearance (i.e., LR-2/3/
4). Such an implementation could reduce rote manual tasks,
helping to simplify LI-RADS for clinical workflow integra-
tion [27].

While these results are promising, there are several lim-
itations that make this a preliminary feasibility study. As a
single-center investigation, only a limited number of imag-
ing studies were available for each class. Thus, only lesions
with typical imaging features on MRI were used, excluding
lesions with more ambiguous features or poor image quality
as well as more complex lesion types such as infiltrative
HCC or complicated cysts. Additionally, LI-RADS is only
applicable to patients at high risk for HCC. However, be-
cause non-HCC lesions are much less common in cirrhotic
livers, this study also included lesions in livers without cir-
rhotic background or hepatitis-B/C, and thus the input does
not identically conform to current consensus. Additionally,
due to limited data from a single institution, pathological
proof was not available for all lesions. Thus, Bground truth^
criteria were carefully selected and defined for each lesion
type as thoroughly outlined in Table S1. Notably, for lesions
without pathological diagnosis, Bground truth^ was
established by analyzing all available clinical and imaging
data, including T1 pre-contrast, T2, and other sequences.
However, these sequences were not used in the model train-
ing and subsequent reader study, and thus their potential
additive value for the CNN performance needs to be evalu-
ated in further studies. Additionally, the simulated reader
comparison did not reflect conditions in clinical practice,
as the test set contained equal numbers of each lesion type
and participants did not have access to ancillary information
such as cl inical data . However, this al lowed for
initial validation of the CNN with radiologists using the
same conditions and input data for a more equivalent com-
parison. Within these limitations, this approach met the
study’s purpose to demonstrate initial feasibility of a liver
MRI lesion classification prototype from available data at
one large academic medical center, providing motivation
for the establishment of larger multi-institutional databases.

In summary, this preliminary study provides proof of prin-
ciple for a DLS that classifies six hepatic lesion types on
multi-phasicMRI, demonstrating high performance when val-
idated by comparison with board-certified radiologists. As the
demands of radiological practice continue to increase, a syn-
ergistic workflow that combines the experience and intuition
of radiologists with the computational power of DL decision-
support tools may offer higher-quality patient care in a time-
efficient manner.
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Supplementary table 
Lesion Type Imaging Characteristics Non-imaging criteria 
Cyst  • Sharply defined, thin walled lesion with no 

septations or signs of hemorrhage or 
inflammation 

• Hypointense and no enhancement of content on 
contrast enhanced phases  

Diagnosed solely based 
on imaging 
characteristics 
 

Cavernous 
Hemangioma  

• Well-circumscribed, spherical to ovoid mass  
• Early peripheral, nodular or globular, 

discontinuous enhancement on arterial phase 
• Progressive centripetal enhancement with 

isointensity to blood vessels on portal venous 
phase  

• Persistent filling or completely filled hyperintense 
mass on delayed phase  

• “Flash-filling” lesions were not included in this 
study.   

Diagnosed solely based 
on imaging 
characteristics 
 

Focal Nodular 
Hyperplasia  

• Round shaped focal liver mass with homogenous 
enhancement and marked hyperintensity in the 
arterial phase 

• Lesion blends into the surrounding parenchyma 
as it becomes isointense on portal venous and 
delayed phase the 

• Potential central/stellate scar shows uptake 
enhancement and is hyperintense on portal 
venous and delayed phases 

• Presence of a central scar was not necessary for 
being classified as classic appearing, since the 
definition of assuming the presence of a stellate 
scar as a typical feature is generally discussed in 
literature 

Diagnosed solely based 
on imaging 
characteristics 
 

Hepato-
cellular 
carcinoma  

OPTN5A:  
• Size: 1-2 cm  
• Representing all of the following features: 

o Increased contrast enhancement on 
arterial phase  

o Washout during portal venous or delayed 
phases  

o Peripheral rim enhancement, illustrating 
a capsule or pseudocapsule  

OPTN5B:  
• Size: 2- 5 cm  
• Arterially hyperenhancing and has at least one of 

two venous features: 
o Washout  
o Peripheral rim enhancement 

OPTN5X:  
• Size: > 5 cm  
• Arterially hyperenhancing and has at least one of 

two venous features: 
o Washout  
o Peripheral rim enhancement 

• Only lesions which 
were classified as 
OPTN 5A, OPTN 5B 
or OPTN5X HCCs 
were included.  

• The classification 
criteria for HCC in the 
UNOS/OPTN system 
were developed in 
such way HCC can be 
unequivocally 
diagnosed by using 
imaging. The 
diagnostic imaging 
criteria driving HCC 
classification rely on 
the characteristic 
appearance of HCC 
on dynamic 
multiphasic contrast-
enhanced CT scans 
or MR images. 

• OPTN class 5 
indicates that a nodule 
meets radiologic 
criteria for HCC. 
 

Intrahepatic 
cholangio-

• Either well circumscribed, large with lobulated 
margins or masses with an infiltrative growth 

• Histopathologic report 
from biopsy or surgery 
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carcinoma  pattern 
• Delayed enhancement with a progressive and 

concentric filling pattern on contrast enhanced 
phases  

• Distally adjacent bile ducts may show prominent 
enlargement 

• Clinical information 
and therapy approach 

Colorectal 
carcinoma 
metastases  

• Well-circumscribed, spherical to ovoid mass 
• Typical enhancement pattern of hypovascular 

metastases with a hypointense center and 
peripheral enhancement; “target” lesion 
appearance  

• Potential perilesional enhancement due to tumor 
vascularity or hepatic edema 

• over time the central part of the lesion remains 
hypointense due to necrosis or hypovascularity 

• Histopathologic report 
from biopsy or surgery 

• Clinical information 
and therapy approach 

• Known history of 
primary malignancy 
 

Table S1: Reference standard for included lesions. 
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Abstract
Objectives To develop a proof-of-concept Binterpretable^ deep learning prototype that justifies aspects of its predictions from a
pre-trained hepatic lesion classifier.
Methods A convolutional neural network (CNN) was engineered and trained to classify six hepatic tumor entities using 494
lesions on multi-phasic MRI, described in Part 1. A subset of each lesion class was labeled with up to four key imaging features
per lesion. A post hoc algorithm inferred the presence of these features in a test set of 60 lesions by analyzing activation patterns
of the pre-trained CNN model. Feature maps were generated that highlight regions in the original image that correspond to
particular features. Additionally, relevance scores were assigned to each identified feature, denoting the relative contribution of a
feature to the predicted lesion classification.
Results Theinterpretabledeeplearningsystemachieved76.5%positivepredictivevalueand82.9%sensitivity inidentifyingthecorrect
radiological features present in each test lesion. The model misclassified 12% of lesions. Incorrect features were found more often in
misclassified lesions than correctly identified lesions (60.4% vs. 85.6%). Feature maps were consistent with original image voxels
contributing to each imaging feature. Feature relevance scores tended to reflect themost prominent imaging criteria for each class.
Conclusions This interpretable deep learning system demonstrates proof of principle for illuminating portions of a pre-trained deep
neural network’s decision-making, by analyzing inner layers and automatically describing features contributing to predictions.
Key Points
• An interpretable deep learning system prototype can explain aspects of its decision-making by identifying relevant imaging
features and showing where these features are found on an image, facilitating clinical translation.

• By providing feedback on the importance of various radiological features in performing differential diagnosis, interpretable
deep learning systems have the potential to interface with standardized reporting systems such as LI-RADS, validating
ancillary features and improving clinical practicality.

• An interpretable deep learning system could potentially add quantitative data to radiologic reports and serve radiologists with
evidence-based decision support.
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Abbreviations
CNN Convolutional neural network
CRC Colorectal carcinoma
DL Deep learning
FNH Focal nodular hyperplasia
HCC Hepatocellular carcinoma
ICC Intrahepatic cholangiocarcinoma
LI-RADS Liver Imaging Reporting and Data System
PPV Positive predictive value
Sn Sensitivity

Introduction

Deep learning (DL) systems based on convolutional
neural networks (CNNs) have shown potential to revo-
lutionize the process of radiological diagnosis [1–3].
Unlike other artificial intelligence techniques, CNNs do
not need to be taught specific radiological features to
learn how to interpret images [4]. A synergistic
workflow that combines the experience of radiologists
and the computational power of artificial intelligence
systems may substantially improve the efficiency and
quality of clinical care. Part I of this article series dem-
onstrated a proof-of-concept 3D CNN for the classifica-
tion of liver lesions on multi-phasic MRI [5]. Although
CNNs have demonstrated high performance in diagnos-
tic classification tasks, their Bblack box^ design limits
their clinical adoption [6–8]. Despite recent advances in
interpretable machine learning [9], deep learning models
still do not provide information about the factors used
in decision-making in a manner that can be understood
by radiologists and other physicians, which prevents
them from incorporating their results into an informed
decision-making process. The inability to explain their
reasoning also leads to a lack of safeguards and ac-
countability when they fail. DL systems that demon-
strate high accuracy in a more transparent manner are
more likely to gain clinical acceptance.

This is especially applicable when incorporating DL into
standardized reporting systems such as the Liver Imaging
Reporting and Data System (LI-RADS). While LI-RADS
has changed the diagnostic workflow of malignant lesions
and contributed to higher quality diagnosis and reporting
[10–12], most studies have demonstrated moderate inter-
observer agreement for LI-RADS categories [13–19]. Recent
studies also highlighted issues regarding the application of LI-
RADS ancillary features, which are primarily based on a com-
bination of biological plausibility, single-center retrospective
studies, and expert opinion with somewhat low level of evi-
dence [20, 21]. For example, the application of such features
resulted in an increased number of misclassifications [10, 14,
22] and ancillary features were not seen as a useful tool for

assigning definite LR classes [13]. Moreover, the application
of a number of ancillary features may be inefficient, as they
affected the final diagnosis in at most 10% of cases [13, 19].
The American College of Radiology has called for novel sys-
tems to increase the efficiency and accuracy of LI-RADS and
to make it more feasible for daily radiology practice [21].
Interpretable DL systems could help to address this gap by
automating the validation, detection, and standardized
reporting of diagnostic imaging features, providing a way
for radiologists to efficiently interact with such tools in a
shared decision-making paradigm.

This study investigates an integrative interpretable DL ap-
proach for DL systems used in clinical radiology, using tech-
niques for identifying, localizing, and scoring imaging features.
In addition to developing a liver lesion classifier for multi-
phasic MRI (Part I), the aim of Part II was to develop a proof-
of-concept interpretable system that justifies aspects of its deci-
sions through internal analysis of relevant radiologic features.

Materials and methods

Deep learning system and model-agnostic
interpretability

This single-center retrospective study is based on an insti-
tutional review board–approved protocol, and the require-
ment for written consent was waived. The specific methods
for patient selection, lesion reference standard, MRI tech-
nique, image processing techniques, and DL model are de-
scribed in Part I of this study [5]. Briefly, a CNN was uti-
lized with three convolutional layers and two fully connect-
ed layers, which was capable of differentiating benign cysts,
cavernous hemangiomas, focal nodular hyperplasias
(FNHs), HCCs, intrahepatic cholangiocarcinomas (ICCs),
and colorectal carcinoma (CRC) metastases after being
trained on 434 hepatic lesions from these classes. This study
was integrated into the Part I DL workflow so that the sys-
tem could be trained to classify lesion types before incorpo-
rating techniques to identify, localize, and score their radio-
logical features (Fig. 1). Specifically, the current study uti-
lized the DL model from Part I which has been trained on a
large dataset including 494 lesions. Additionally, custom
algorithms were applied to analyze specific hidden layers
of this pre-trained neural network in a model-agonistic ap-
proach. This method is also known as post hoc analysis (not
to be confused with the post hoc analysis in statistics) and is
generalizable to various pre-trained machine learning neu-
ral networks [23, 24]. Under the taxonomy of established
interpretability methods, these algorithms fall under the
general category of feature summary statistic. In terms of
scope, the methods used describe local interpretability
where the focus is on individual predictions, as opposed to
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global scope where the entire model behaviour is
analysed. These selected techniques are especially useful

for the purposes of communicating feature information to
radiologists. These algorithms are described in detail below.

Table 1 Radiological features
labeled for each class. A total of
224 example images were used
across the 14 radiological
features, and some images were
labeled with multiple features

Radiological features Associated lesion
types

Number of
examples

Frequency in the
test set

Arterial phase hyperenhancement FNH, HCC 20 19/60

Central scar FNH 10 1/60

Enhancing rim (CRC metastasis),
capsule/pseudocapsule (HCC)

CRC metastasis,
HCC

20 15/60

Heterogeneous lesion ICC, HCC
(OPTN5B/X)

20 17/60

Hyperenhancing mass on delayed phase Cavernous
hemangioma

17 8/60

Hypoenhancing core (CRC metastasis),
hypoenhancing mass (cyst)

Cyst, CRC
metastasis

20 20/60

Infiltrative appearance ICC 15 4/60

Iso-intensity on venous and delayed phase FNH 20 9/60

Nodularity ICC 15 6/60

Nodular/discontinuous peripheral
hyperenhancement

Cavernous
hemangioma

20 10/60

Progressive centripetal filling Cavernous
hemangioma

20 9/60

Progressive hyperenhancement CRC metastasis,
ICC

20 19/60

Thin-walled mass Cyst 20 8/60

Washout HCC 20 9/60

Fig. 1 Flowchart of the approach
for lesion classification and
radiological feature identification,
mapping, and scoring. The entire
process was repeated over 20
iterations
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Radiological feature selection

Fourteen radiological features were selected comprising lesion
imaging characteristics that are observable on multi-phasic MRI
andare commonlyutilized in day-to-day radiological practice for
differentiating between various lesion types [25, 26] (Table 1).
This includes LI-RADS features for HCC classification, includ-
ing arterial phase hyperenhancement, washout, and pseudocap-
sule.Up to 20 hepatic lesions in the training set that best exempli-
fied each feature were selected (Fig. 2). From this sample, ten
were randomly selected in each repetition of this study. Imaging
features with similar appearances were grouped. A test set of 60
lesions was labeled with the most prominent imaging features in
each image (1–4 features per lesion). This test setwas the sameas
that used to conduct the reader study in Part I.

Feature identification with probabilistic inference

For each radiological feature, a subset of ten sample lesions
with that feature was passed through the CNN, and the inter-
mediate outputs of the 100 neurons in the fully connected
layer were inspected. By analyzing these neuronal outputs
among the ten samples, each radiological feature was associ-
ated with specific patterns in these neurons. The test image
was passed through the CNN to obtain its intermediate out-
puts, which were compared to the outputs associated with
each feature. When the intermediate outputs of a test image
are similar to the outputs observed for lesions with a particular
feature, then the feature is likely to be present in the test image
(see Fig. 3). The intermediate outputs were modeled as a 100-
dimensional random variable and the training dataset was
used to obtain its empirical distribution (refer to Bmarginal
distributions^ and Bconditional distributions^ in [27]. Using
kernel density estimation, the features present in each test

Fig. 2 Examples of labeled sample lesions for the 14 radiological features

Fig. 3 CNN model architecture used to infer the lesion entity and
radiological features based on the input image, shown for an example
of intrahepatic cholangiocarcinoma. Patterns in the convolutional layers
are mapped back to the input image to establish feature maps for each
identified feature. As well, relevance scores are assigned to the features
based on the correspondence between patterns in the convolutional
layers, the lesion classification, and the identified features
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image were probabilistically inferred. The neuronal outputs of
augmented versions of all images were used to provide more
robust estimates of the probability distributions. As described
in Part I, image augmentation creates copies of images with
stochastic distortions.

The CNN system’s performance was assessed by its ability
to correctly identify the radiological features in the test set of
60 labeled lesions. Performance was evaluated in 20 iterations
with separately trained models using different choices of the
ten sample lesions. Positive predictive value (PPV) and sen-
sitivity (Sn) were measured for the entire population (aver-
aged over the total number of features across all lesions).
This was performed for each feature individually and for each
lesion class.

Feature mapping with weighted activations

After identifying the radiological features observed in an input
lesion image, 3D feature maps were derived from the CNN’s
layer activations to show where features are observed within
each image. For this analysis, the post-activation neuronal
outputs of the final convolutional layer were used, which has
128 channels. The original images have 24 × 24 × 12 resolu-
tion and pass through padded convolutions and a 2 × 2 × 2
max pooling layer before reaching this layer at 12 × 12 × 6
spatial dimensions. The feature map was constructed for a test
image by obtaining this layer’s output and applying a weight-
ed average over the 128 channels using different weights for
each of the 1–4 radiological features identified within the im-
age. The resulting 12 × 12 × 6 feature maps were upsampled
using trilinear interpolation to correspond to the 24 × 24 × 12
resolution of the original image. The mapping to the three
MRI phases cannot be readily traced. The channel weights
used for each feature were determined by correlating the chan-
nel with at most one of the features based on the channel
outputs observed in the sample lesions labeled with the
feature.

Feature scoring with influence functions

Among the radiological features identified in an image,
some features may be more important for classifying the
lesion than others. The contribution of each identified
feature to the CNN’s decision was analyzed by
impairing the CNN’s ability to learn the specific feature
and examining how this impacts the quality of the
CNN’s classification. If the feature is not important for
classifying the lesion, then the CNN should still make
the correct decision, even if it can no longer identify
the feature. The CNN’s ability to learn a particular fea-
ture can be hampered by removing examples of that
feature from its training set. Although repeatedly remov-
ing examples and retraining the model is prohibitively

time-consuming, Koh et al. developed an approximation
of this process that calculates an Binfluence function^
[28]. The influence function of a feature with respect
to a particular image estimates how much the probabil-
ity of the correct lesion classification deteriorates for
that image as examples of the feature are removed from
the CNN’s training set. Thus, the radiological feature
that is most influential for classifying a particular lesion
is the feature with the largest influence function for that
image. Scores were obtained for each feature by mea-
suring their respective influence functions, then dividing
each by the sum of the influences. No ground truth was
used for the optimal weighting of radiological features
for diagnosing a given image, since a CNN does not
Breason^ about radiological features in the same way
as a radiologist. The definition and further interpretation
of the influence function are provided in Supplement 1.

Results

Characteristics of the 296 patients included in this study are
described in Part I of this article series. CNN model classifi-
cation performance is also described in detail in Part I.

Feature identification with probabilistic inference

A total of 224 annotated images were used across the
14 radiological features, and some images were labeled
with multiple features. After being presented with a ran-
domly selected subset of 140 out of 224 sample lesions,
the model obtained a PPV of 76.5 ± 2.2% and Sn of
82.9 ± 2.6% in identifying the 1–4 correct radiological
features for the 60 manually labeled test lesions over
20 iterations (see Table 2).

Among individual features, the model was most suc-
cessful at identifying relatively simple enhancement pat-
terns. With a mean number of 2.6 labeled features per
lesion, the model achieved a precision of 76.5 ± 2.2%
with a recall of 82.9 ± 2.6% (see Table 3). It achieved
the best performance at identifying arterial phase
hyperenhancement (PPV = 91.2%, Sn = 90.3%) ,
hyperenhancing mass on delayed phase (PPV = 93.0%,
Sn = 100%), and thin-walled mass (PPV = 86.5%, Sn =
100%). In contrast, the model performed relatively poor-
ly on more complex features, struggling to identify
nodularity (PPV = 62.9%, Sn = 60.8%) and infiltrative
appearance (PPV = 33.0%, Sn = 45.0%). The CNN also
overestimated the frequency of central scars (PPV =
32.0%, Sn = 80.0%), which only appeared once among
the 60 test lesions.

The model misclassified lesions with higher frequency
when the radiological features were also misclassified. For

3352 Eur Radiol (2019) 29:3348–3357



the 12% of lesions that the model misclassified over 20 itera-
tions, its PPV and Sn were reduced to 56.6% and 63.8%,
respectively. Furthermore, the feature that the model predicted
with the highest likelihood was only correct in 60.4% of
cases—by comparison, the feature that the model predicts
with the greatest likelihood in correctly classified lesions
was correct 85.6% of the time.

This effect was also observed when the feature identifica-
tion metrics are grouped by lesion classes, as the model gen-
erally identified features most accurately for classes in which
the lesion entity itself was classified with high accuracy. The
model obtained the highest PPV for benign cyst features at
100% and lowest for CRC metastasis features at 61.2%. The
model attained the highest sensitivity for hemangioma fea-
tures at 96.1% and lowest for HCC features at 64.2%. The
lesion classifier performed better on both cysts (Sn = 99.5%,
Sp = 99.9%) and hemangiomas (Sn = 93.5%, Sp = 99.9%) rel-
ative to HCCs (Sn = 82.0%, Sp = 96.5%) and CRCmetastases
(Sn = 94.0%, Sp = 95.9%).

Feature mapping with weighted activations

The feature maps (Fig. 4) were consistent with radiolog-
ical features related to borders: enhancing rim and cap-
sule/pseudocapsule, and a thin wall yield feature maps
that trace these structures. Additionally, the model’s fea-
ture maps for hypoenhancing and hyperenhancing masses
were well localized and consistent with their location in
the original image: hypoenhancing core/mass and
nodularity had fairly well-defined bounds, as did arterial
phase hyperenhancement and hyperenhancing mass in
delayed phase. Iso-intensity in venous/delayed phase
was also well defined, capable of excluding the
hyperenhancing vessels in its map. In contrast, features
describing enhancement patterns over time were more
diffuse and poorly localized. There was slight misregis-
tration between phases included in the hemangioma ex-
ample, contributing to artifacts seen in the feature map
for nodular peripheral hyperenhancement.

Table 2 Precision and recall of
the model for determining
individual radiological features
present in lesion images

Radiological feature Positive predictive value
(mean ± SD)

Sensitivity (mean ±
SD)

Arterial phase hyperenhancement 91.2 ± 5.6% 90.3 ± 3.8%

Central scar 32.0 ± 21.7% 80.0 ± 40.0%

Enhancing rim (CRC metastasis),
capsule/pseudocapsule (HCC)

74.8 ± 7.5% 75.3 ± 8.7%

Heterogeneous lesion 64.9 ± 4.8% 75.6 ± 5.4%

Hyperenhancing mass on delayed phase 93.0 ± 6.2% 100.0 ± 0.0%

Hypoenhancing core (CRC metastasis),
hypoenhancing mass (cyst)

82.4 ± 4.5% 71.3 ± 11.8%

Infiltrative appearance 33.0 ± 11.3% 45.0 ± 10.0%

Iso-intensity on venous and delayed phase 69.5 ± 8.7% 92.2 ± 9.4%

Nodularity 62.9 ± 14.0% 60.8 ± 22.5%

Nodular/discontinuous peripheral hyperenhancement 80.3 ± 10.0% 94.0 ± 7.3%

Progressive centripetal filling 73.7 ± 8.5% 95.0 ± 5.5%

Progressive hyperenhancement 87.1 ± 5.4% 92.6 ± 3.9%

Thin-walled mass 86.5 ± 8.5% 100.0 ± 0.0%

Washout 67.4 ± 10.0% 66.7 ± 9.3%

Overall 76.5 ± 2.2% 82.9 ± 2.6%

Table 3 Precision and recall of
the model for determining the
radiological features present in
test images grouped by lesion
class

Lesion class Mean number of labeled
features per lesion

Precision (mean ± SD) Recall (mean ± SD)

Benign cyst 1.8 100.0 ± 0.0% 94.7 ± 7.1%

Cavernous hemangioma 2.7 81.9 ± 3.4% 96.1 ± 3.2%

Focal nodular hyperplasia 2.0 77.1 ± 7.7% 95.0 ± 5.7%

Hepatocellular carcinoma 3.2 83.5 ± 5.0% 64.2 ± 6.9%

Intrahepatic cholangiocarcinoma 3.0 69.3 ± 4.0% 83.3 ± 5.2%

Colorectal carcinoma metastasis 2.7 61.2 ± 4.9% 74.4 ± 7.0%

Overall 2.6 76.5 ± 2.2% 82.9 ± 2.6%
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Feature scoring with influence functions

The most relevant radiological feature for cavernous
hemangiomas was progressive centripetal filling, with a
s c o r e o f 4 8 . 6% c omp a r e d w i t h 3 4 . 0% f o r
hyperenhancing mass on delayed phase and 21.6% for
nodular/discontinuous peripheral hyperenhancement.
Thin-walled mass was a more relevant feature for clas-
sifying benign cysts than hypoenhancing mass (67.1%
vs. 46.6%; Table 4). The most relevant feature for

correctly classifying FNHs was iso-intensity on venous/
delayed phase (79.4%), followed by arterial phase
hyperenhancement (65.8%) and central scar (37.4%).
The relevance scores for HCC imaging features were
49.5% for capsule/pseudo-capsule, 48.5% for heteroge-
neous lesion, 40.3% for washout, and 38.4% for arterial
phase hyperenhancement. The relevance scores for ICC
imaging fea tures were 58 .2% for progress ive
hyperenhancement, 47.3% for heterogeneous lesion,
43.8% for infiltrative appearance, and 37.2% for

Fig. 4 2D slices of the feature maps and relevance scores for examples of
lesions from each class with correctly identified features. The color and
ordering of the feature maps correspond to the ranking of the feature
relevance scores, with the most relevant feature’s map in red. The

feature maps are created based on the entire MRI sequence, and do not
correspond directly to a single phase. These results are taken from a single
iteration

Table 4 Features ranked by mean relevance score for the features for test lesions in each class. Percentages do not sum to 100% because some lesions
only have a subset of the features listed above

Lesion class Feature 1 Feature 2 Feature 3 Feature 4

Benign cyst Thin-walled mass (67.1%) Hypoenhancing mass (46.6%) N/A N/A

Cavernous
hemangioma

Progressive centripetal
filling (48.6%)

Hyperenhancing mass on
delayed phase (34.0%)

Nodular/discontinuous
peripheral
hyperenhancement
(21.6%)

N/A

Focal nodular
hyperplasia

Isointense on venous/delayed
phase (79.4%)

Arterial phase
hyperenhancement (65.8%)

Central scar (37.4%) N/A

Hepatocellular
carcinoma

Capsule/pseudo-capsule (49.5%) Heterogeneous lesion (48.5%) Washout (40.3%) Arterial phase
hyperenhancement (38.4%)

Intrahepatic
cholangiocarcinoma

Progressive hyperenhancement
(58.2%)

Heterogeneous lesion (47.3%) Infiltrative appearance
(43.8%)

Nodularity (37.2%)

Colorectal carcinoma
metastasis

Progressive hyperenhancement
(67.2%)

Hypoenhancing core (52%) Enhancing rim (46.9%) N/A
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nodularity. The most relevant imaging feature for cor-
rectly classifying CRC metastases was progressive
hyperenhancement (67.2%), followed by hypoenhancing
core (52.0%) and enhancing rim (46.9%).

Discussion

This study demonstrates the development of a proof-of-
concept prototype for the automatic identification, mapping,
and scoring of radiological features within a DL system, en-
abling radiologists to interpret elements of decision-making
behind classification decisions. While DL algorithms have
the opportunity to markedly enhance the clinical workflow
of diagnosis, prognosis, and treatment, transparency is a vital
component. Indeed, it is unlikely that clinicians would accept
automated diagnostic decision support without some measure
of Bevidence^ to justify predictions. The method of identify-
ing and scoring radiological features allows the algorithm to
communicate factors used inmaking predictions. Radiologists
can then quickly validate these features by using feature maps
or similar interpretability techniques to check whether the sys-
tem has accurately identified the lesion’s features in the correct
locations.

The CNN was able to identify most radiological features
fairly consistently despite being provided with a small sample
of lesions per class, in addition to being trained to perform an
entirely different task (classifying the lesion entity in Part I). For
many simple imaging features such as hyperenhancing or
hypoenhancing masses, the model was able to accurately and
reliably determine its presence, location, and contribution to the
lesion classification. However, it had greater difficulty identify-
ing or localizing features that consist of patterns over multiple
phases than patterns that are visible from a single phase or
constant across all phases. It struggled in particular on more
complex features that may appear quite variable across different
lesions such as infiltrative appearance, suggesting that these
features are not well understood by the CNN or that more
examples of these features need to be provided. By highlighting
which radiological features the CNN fails to recognize, this
system may provide engineers with a path to identify possible
failure modes and fine-tune the model, for example, by training
it on more samples with these features.

A general relationship was observed between the model’s
misclassification of a lesion entity and its misidentification of
radiological features, which could provide researchers and
clinicians with the transparency to identify when and how a
CNN model fails. If the model predicts non-existent imaging
features, clinicians will be aware that the model has likely
made a mistake. Moreover, this gives developers an example
of a potential failure mode in the model. An interpretable DL
system can be utilized as a tool for validation of imaging
guidelines, particularly for entities which are uncommon or

have evolving imaging criteria, such as bi-phenotypic tumors
and ICCs [12, 29, 30]. As shown in the results on feature
scoring, the model tends to put greater weight on imaging
features that have greater uniqueness and differential diagnos-
tic power in the respective lesion class. An interpretable CNN
could be initially presented with a large set of candidate im-
aging features. Then by selecting the imaging features with the
highest relevance score output by the model, one could deter-
mine which features are most relevant to members of a given
lesion class. This approach also addresses the need for more
quantitative evidence-based data in radiology reports.

An interpretable DL system could help to address the large
number of ancillary imaging features that are part of the LI-
RADS guidelines and similar systems by providing feedback
on the importance of various radiological features in performing
differential diagnosis. With further refinements, the presented
concepts could potentially be used to validate newly proposed
ancillary features in terms of frequency of occurrence, by apply-
ing it to a large cohort and analyzing the CNN’s predictions.
Features thatarepredictedwith lowfrequencyor relevancecould
be considered for exclusion from LI-RADS guidelines. This
could be a first step towards providing a more efficient and clin-
ically practical protocol [13, 19]. An interpretable DL model
could also enable the automated implementation of such com-
plex reporting systems as LI-RADS, by determining and
reporting standardized descriptions of the radiological features
present. By enabling such systems to become widely adopted,
there is potential for the reporting burden on radiologists to be
alleviated, dataquality to improve, and thequality andconsisten-
cy of patient diagnosis to increase.

Since the present study is designed as a proof-of-concept
development, there are multiple limitations that future studies
will address. As a single-institution study with limited data avail-
ability, a relatively small number of sample lesions was included
for each lesion type. This will be remedied by eventually utiliz-
ing larger multi-institutional datasets. In addition, while feature
extraction could be easily validated with ground truth confirma-
tion by radiological readers, there is intrinsically no existing
ground truth criteria for validating feature maps and relevance
scores. As a result, more formal validation of these elements will
require an aggregate of forthcoming studies that demonstrate
reproducibility under different DL models and datasets. Such a
system would also need to demonstrate similar functionality
using different choices of radiological features and lesion types.
Future work will demonstrate this technique on LI-RADS ancil-
lary features, which will require incorporating a more complex
CNNmodel capable of analyzing other types ofMRI sequences.

In summary, this study demonstrates a proof-of-concept
interpretable deep learning system for clinical radiology.
This provides a technique for interrogating relevant portions
of an existing CNN, offering rationale for classifications
through internal analysis of relevant imaging features. With
further refinement and validation, such methods have the
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potential to eventually provide a cooperative approach for
radiologists to interact with deep learning systems, facilitating
clinical translation into radiology workflows. Transparency
and comprehensibility are key barriers towards the practical
integration of deep learning into clinical practice [31]. An
interpretable approach can serve as a model for addressing
these issues as the medical community works to translate use-
ful aspects of deep learning into clinical practice.
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Supplement 1 

The optimal neural network parameters 𝜃∗ = argmin
*∈,

-
.
/ 𝐿(𝑥3, 𝑦3, 𝜃)

.
37-  minimize the loss function

𝐿 averaged over training images {𝑥3}3∈{-,...,.} with corresponding lesion classes 𝑦3. The perturbed 

parameters 𝜃;<=>∗  were defined as the optimal network parameters when it is trained with a 

reweighted loss function, in which the loss for a particular training datapoint (𝑥, 𝑦) is 

downweighted by an amount 𝜖. 

𝜃;<=>∗ (𝑥, 𝑦, 𝜖) = 𝑚𝑖𝑛
*∈,

C
1
𝑛
E𝐿(𝑥3, 𝑦3, 𝜃) − 𝜖𝐿(𝑥, 𝑦, 𝜃)
.

37-

G 

Choosing 𝜖 = 0 yields the unperturbed optimum 𝜃∗, while choosing 𝜖 = -
.
 is equivalent to removing 

the datapoint from the training set. Thus as 𝜖 increases within this range, the perturbed network 

faces a lower penalty for misclassifying the downweighted datapoint, and so it may become 

harder to correctly classify test cases that are similar to this datapoint. In particular, if the training 

datapoint (𝑥, 𝑦) is helpful for predicting some test datapoint (x,y), then 𝐿(x,y, 𝜃∗) is likely to be 

less than 𝐿(x,y, 𝜃;<=>∗ (𝑥, 𝑦, 𝜖)) even for small values of 𝜖. To quantify this effect, the influence of a 

training datapoint on a test datapoint can be defined by taking the limit that 𝜖 → 0: 

𝐼(𝐱, 𝐲, 𝑥, 𝑦) =
𝑑𝐿(𝐱, 𝐲, 𝜃;<=>∗ (𝑥, 𝑦, 𝜖))

𝑑𝜖
|O7P 

The influence function can be extended to represent not just the effect of a single training 

datapoint, but the influence of a radiological feature as a whole. Specifically, downweighting 

training datapoints that exemplify a particular feature is likely to hinder the model's ability to 

recognize that feature. By measuring the deterioration in classification performance as the 
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network loses its ability to detect a particular feature, the feature-level influence function can 

quantify to what extent different features contribute to a particular prediction.  Hence, an influence 

function was defined with respect to each of the radiological features {𝑓R}R∈{-,...,-S} by selecting a 

subset of training datapoints (with indices denoted by 𝐽(𝑓R) ⊆ {1, . . . , 𝑛}) that corresponded to 

examples of the feature, and taking the average of their individual influence functions: 

 

𝐼V(𝐱, 𝐲, 𝑓R) =
1

|𝐽(𝑓R)|
E 𝐼(𝐱, 𝐲, 𝑥W, 𝑦W)

W∈X(VY)

 

 

When the influence function is large, this suggests that removing even a few examples of a feature 

from the training set would compromise the model's ability to correctly classify other lesions with 

the feature, and hence that feature is assigned a higher relevance score. This study computed an 

approximation to the influence function as derived by Koh et al. [26]. An intuitive description of 

the implemented approach is described in the body of the paper under “Feature scoring with 

influence functions”. 
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