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UTR   untranslated region 
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1. Introduction 

Mutations are often associated with negative phenomena;  however mutations can play a key role in 

adaptation to new environmental conditions, and quite often are desirable [1]. Mutations provide an 

essential and vital basis for evolutionary adaptation on many levels such as, for example, involving 

changes in protein functionality, which is crucial to the proper working of biochemical pathways.  

Many diseases are caused by mutations which introduce a premature stop codon, which often leads 

to a loss of range of functions or lower mRNA levels due to mRNA nonsense decay. Examples of such 

diseases are: cystic fibrosis, Duchenne muscular dystrophy, β-thalassemia, and many types of cancer. 

These kinds of changes can arise from the occurrence of germline or somatic DNA mutations, 

inaccurate or inefficient pre-mRNA splicing, or lack of optimization of RNA editing [2].  

Currently, the significance of the occurrence of nonsense mutations (including pretermination codons)  

is not fully understood. The considerable range of genetic variation in human populations may partly 

reflect characteristic processes of adaptation to changing environmental conditions. However, 

genomic signatures of adaptation have not yet been fully elucidated. Understanding the extent of 

allelic variation in human genes within and outside populations, based on the action of demographic 

and evolutionary factors, is one of the main research goals of human genetics. In recent years, 

epigenetic factors have also been studied and these also have a significant impact on modern humans. 

Recent genetic studies have revealed that some genes can undergo strong selection for new alleles [3–

6]. These include genes involved in lactase persistence [7], altered bitter taste [8], reduced olfactory 

receptors [9] and malaria resistance [5,6]. These examples of recent selection in humans have been 

discovered using candidate gene studies with an a priori hypothesis of selection. More recently, whole-

genome approaches have been used to identify candidate genomic loci that may be the target of 

positive selection during human evolution. However, much is still unknown about the types of genes 

or biological processes commonly involved in the adaptation of modern humans. One area, the study 

of which might increase knowledge and give a better understanding of the processes involved, lies in 

the study of the occurrence of nonsense mutations and their possible association with predisposition 

to obesity, overweight or infertility, as is discussed below. This might also lead to the identification of 

new treatment options [10]. 
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1.1 Diseases caused by nonsense mutations 

 

Nonsense mutations are sometimes referred to as any mutations which result in, for example, a 

nonsense protein (e.g. by a frame shift or a pretermination codon), and this more loose or generalized 

definition is used in this section only. (In the remainder of the thesis “nonsense mutation” is used 

synonymously with “pretermination codon”.) 

It was estimated that nonsense mutations (as defined using the generalized definition) are involved in 

about 10% of patients with genetic disorders, in particular they account for 20% of all disease-

associated single-base-pair mutations, and are three times more likely to come to clinical attention 

than missense mutations [11]. Genetic diseases caused by nonsense mutations belong to extreme 

classification i.e. they are either rare or very common. They either provide a rare pathology category 

(Duchenne muscular dystrophy (DMD), cystic fibrosis (CF), spinal muscular fibrosis (SMA)) or a frequent 

disease class (cancer, metabolic diseases, neurological disorders). Nonsense mutations are also found 

in some relevant oncogenes of many cancer patients, resulting in a complete lack of full-length protein 

products. This fact makes nonsense mutations a point of interest for a significant number of patients 

and medical researchers [12]. 

Types of point mutation are shown in Table 2, and each of these types might produce a nonsense 

mutation (including the possibility of a pretermination codon). Nonsense mutations can have severe 

consequences. For example, deletion in an ion channel protein causes a substantial fraction of cystic 

fibrosis (CF) cases, a chronic disease affecting the lungs and the digestive system. In this case one or 

more nucleotides are "skipped" during replication or otherwise excised, often resulting in a frameshift 

[13].  
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Table 1. Types of Mutations and Their Impact- examples.  

POINT CLASS OF MUTATION 

HUMAN DISEASE LINKED TO THE 

MUTATION 

TYPE OF MUTATION DESCRIPTION 

Sickle-cell anemia SUBSTITUTION One base is incorrectly added 

during replication and replaces 

the pair in the corresponding 

position on the complementary 

strand 

 

beta-thalassemia INSERTION One or more extra nucleotides 

are inserted into replicating 

DNA, often resulting in a 

frameshift 

Cystic fibrosis DELETION one or more nucleotides is 

omitted during replication 

 

 

 

Recently, new potential therapeutics for human diseases resulting from nonsense mutation are being 

developed. These new approaches are based on, primarily, nucleic acids and include (Figure 6) [12]: 

• antisense oligonucleotides to alter the processing of pre-mRNA and to modulate the 

expression of essential factors for NMD and translation termination; antisense oligos with 

exon-skipping ability to splice out pretermination codon (PTC)-harboring exons in frame 

• suppressor-tRNAs to read a PTC, acting by incorporation of a cognate amino acid at the PTC 

position 

• RNA editing,  

• box-H/ACA -guide RNAs to directly modify the PTC, thus converting it back to a sense codon 

by targeted conversion of uridine in the first position of a PTC into pseudouridine 

•  CRISPR technology gene editing 
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Besides those mentioned, nonsense suppression by small molecules can be added, e.g. aminoglycoside 

antibiotics are a way to promote PTC recognition by near cognate tRNA, essentially competing with 

translation termination and enabling the synthesis of a full functional protein [14,15]. 

 

Figure 1. Nonsense suppression by various approaches. Source of information: Morais et al (2020) [12]. 

 

The above section uses a generalized definition of nonsense mutations – whereas in the rest of this 

thesis the definition of “nonsense mutation” is restricted to those which produce pretermination 

codons. 
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1.2 Nonsense mutations which cause pretermination codons. 

A nonsense mutation is a point mutation of a single base pair (A, G, C, or T). One type of nonsense 

mutation results in a codon that specifies termination of translation: UAA, UGA, or UAG and it is this 

type of nonsense mutation that is referred to in the rest of this thesis. 

A nonsense mutation involving standard bases results in the premature termination of translation of 

the mRNA; thus a truncated protein is formed (Figure 1). Truncated proteins, or proteins lacking parts 

of their original structure, might not be expressed at all or, if they are expressed, are usually unable to 

function properly and can lead to various genetic disorders. The relationship between these nonsense 

mutations and various phenotypes is that the protein truncation can either result in reduced or 

complete lack of expression, or drastically alter the normal working of the proteins which can cause a 

wide range of phenotypes, from mild to severe. These phenotypes can be determined by the sequence 

and three-dimensional structure of the truncated protein created as a result of the mutation. To 

further elaborate — a specific protein truncation by a nonsense mutation is determined by the newly 

created stop codon, and the structure of the protein, if expressed, is altered by the amount of amino 

acid chain that was removed from its original intended structure. Due to premature termination 

several consequences can be considered. Firstly, the mRNA carrying a premature mutation is often 

targeted for rapid degradation (through a cellular process known as nonsense-mediated mRNA decay), 

so translation might not be possible. Secondly, even if the mRNA is stable enough to be translated, the 

truncated protein is usually so unstable that it can be rapidly degraded through cellular mechanisms 

[16]. 



10 
 

 

Figure 2.  The nonsense mutation. A nonsense mutation involving standard bases occurs in DNA when a sequence change 

gives rise to a stop codon rather than a codon specifying an amino acid. The presence of the new stop codon results in the 

production of a shortened, unfinished protein that is likely non-functional.  

Source of image: [https://www.genome.gov/genetics-glossary/Nonsense-Mutation] 



11 
 

Mutations can be classified for the ease of understanding their different types and their roles (Figure 

2) and can be inherited or can occur de novo [17]. The earlier a mutation affects physiological 

development, the more severe the effects it will likely have on the phenotype of an organism [18].  

An additional factor that can enhance a mutation’s impact is its class. There are 3 basic classes of 

mutations. The first class are the mutations that cause a change in a single nucleotide, which are called 

point mutations. Within that class 3 types of mutations can be differentiated: substitution, insertion 

and deletion. Point mutations can have a variety of effects on an organism's phenotype, depending on 

where the mutation occurs and what type of change to the nucleotide sequence is made (Table 1). 

Some point mutations are silent, meaning they do not alter the amino acid sequence of a protein and 

have no effect on its function. Other point mutations can result in missense or nonsense mutations, 

which can lead to changes in protein structure or function, or even premature termination of protein 

synthesis [19]. Although nonsense mutations are thought to be mostly due to replication error (see 

Figure 2), they could be produced by any of the other mechanisms shown. 

 

Figure 3. Classification of mutations. A nonsense mutation is placed in the ‘mutation due to replication error’ sub-category 

of mutation spontaneous mutations. It is further placed in the ‘point mutation’ sub-category of mutation due to replication 

error (specifically, in the sub-category of point mutations – coding region). Modified from 

[https://www.biologyonline.com/dictionary/nonsense-mutation] 
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Table 2. Differences between nonsense mutations and other types of point mutations. 

[https://www.biologyonline.com/dictionary/nonsense-mutation] 

POINT MUTATIONS 

CHARACTERISTICS NONSENESE 

MUTATION 

NEUTRAL 

MUTATION 

MISSENSE 

MUTATION 

SILENT MUTATION 

= a type of neutral 

mutation 

TYPE OF CHANGE Nonsense codons/ 

premature 

termination 

codons/ premature 

stop codon 

developed 

Non-synonymous 

or synonymous 

codon developed 

Non-synonymous 

codon developed 

Synonymous codon 

developed 

CHANGES IN THE 

DNA SEQUENCE 

YES YES YES YES 

CHANGES AT THE 

AMINO ACIDS 

LEVEL 

YES YES YES NO 

AMINO ACID 

ENCODING 

Stop codon/ 

Premature 

termination codon 

SAME or different DIFFERENT SAME 

PROTEINENCODING Incomplete/ Non-

functional protein 

product 

SAME or different DIFFERENT SAME 

 

In a study by Fujikura et al. on Premature termination codons in modern human genomes, 246 PTCs 

were found in which natural s-election resulted in new alleles with high frequencies (1% to 96%) of 

derived alleles and varying levels of population diversity . In the National Heart, Lung, and Blood 

Institute (NHLBI) and the 1000 Genomes (1000G) projects - two large sets of population exome 

sequences were used to detect recently-arising PTCs in the human genome. 16,281 segregating PTCs 

were discovered by a comprehensive search from a total of 7,595 people chosen from 16 ethnicities. 

Data about alleles with PTC mutations were obtained from the UCSC genome browser and the NCBI 

dbSNP database. As a reference point, a derived allele frequency (DAF) of 1% was used.  

PTC genes formed protein and regulatory networks restricted to 15 biological processes or gene 

families, of which seven categories were previously undescribed.  
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For the present analysis, 141 SNPs leading to a premature stop codon were selected from the 246 

described in Fujikura, K. et al. Seven of the proteins coded for were shown to be possibly involved 

during spermatogenesis [20]. These mutations are located in the genes: DYX1C1, ZAN, ODF3L1, 

PLA2G2C, SPATA8, SPERT, STARD6 and are reported to be strongly expressed in the gonads [21]. Some 

of the genes harbouring the mutation have been ontologically categorised as follows [22]: metabolism 

(PRAMEF2, TRPM1, CALML4, MATK, FASTKD1, ERVMER34, UNC93A, PSCA); metabolism of drugs 

(KRTAP1-1, ABCA10, ABCC12, CYP2C18, SULT1C3, UGT2A1), immune system (LAIR2, PXDNL, IFNE, 

TLR5), zinc finger (ZNF860, ZIM3, ZNF727, ZNF77, ZNF80), keratin ( FLG2, KRT83, KRTAP1-1). Based on 

the ontology of some genes connected with metabolism or gonads, it was decided to analyse the 

phenotypes: obesity, overweight, fertility and life expectancy. 

 

1.3 Factors co-responsible for mutations 

There are numerous factors which can play a role in the occurrence of nonsense mutations. Due to the 

fact that nonsense mutations are placed in the ‘spontaneous mutation’ broad category, and mostly 

arise as point mutations (Figure 2.), these kind of mutations do not have to arise from biological, 

chemical or physical mutagens. The most common cause of these mutations is thought to be 

spontaneous DNA changes, e.g. the DNA spontaneously breaks down or is not copied accurately 

(Figure 1). A nonsense mutation can be caused without mutagenic agent activity following particular 

processes during replication of genetic material. There are various mechanisms by which nonsense 

mutations can arise e.g. due to replication processes: error in DNA repair, error in transcription, error 

in polymerisation. However, nonsense mutations might also be caused by mutagens which can 

increase the rate of mutation by damaging DNA. Physical mutagens, such as UV rays and X-rays, cause 

damage to DNA by breaking chemical bonds and altering the structure of DNA molecules. Chemical 

mutagens, on the other hand, interfere with DNA replication by inserting themselves between base 

pairs or causing base substitutions and deletions [23].  
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1.4 Effects of mutations 

Occurrence of a nonsense mutation in a gene can result in deleterious, neutral or beneficial outcomes. 

Deleterious nonsense mutations are the most common and are usually linked to genetic disorders as 

they lead to the truncation of a protein that performs a vital function in the body. The existence of a 

nonsense mutation causes an overall decline in reproductive fitness. Deleterious nonsense mutations 

are harmful because, even if it is expressed, the truncation of the protein can lead to the loss of its 

functional domains. This can result in a malfunctioning or non-functional protein, which can have 

serious consequences for the body. For example, if the protein is an enzyme that catalyzes a critical 

biochemical reaction, its truncation could lead to the accumulation of toxic metabolites and metabolic 

disorders. Similarly, if the protein is a receptor that mediates important signaling pathways, its 

truncation could disrupt cellular communication and lead to developmental defects or diseases. 

Therefore, nonsense mutations that cause premature termination codons (PTCs) in vital proteins are 

generally considered harmful and can be associated with genetic disorders or diseases. [24,25] 

Neutral mutations that go undetected due to no apparent change in protein functioning (or with 

changes that are compensated for by other proteins) and effects are recognized as neutral in nature. 

However, just because a mutation is considered neutral does not mean it cannot have any impact on 

the organism. For instance, a neutral mutation may alter the rate of transcription or translation, which 

could affect the overall expression of the gene. Additionally, neutral mutations can accumulate over 

time and lead to genetic drift, which can have significant evolutionary consequences [25].  Many 

nonsense mutations have apparently near-neutral selection. 

Beneficial mutations are crucial for the survival and evolution of species. They provide a selective 

advantage to organisms, allowing them to adapt to changing environments and improve their chances 

of reproducing successfully. One of the most significant benefits of beneficial mutations is that they 

can help organisms resist diseases and environmental stressors. For example, a mutation that confers 

resistance to a particular pathogen can help an organism survive in an environment where that 

pathogen is prevalent. Another benefit of beneficial mutations is that they can lead to the 

development of new traits or characteristics that enhance the fitness of organisms. This can include 

changes in behavior, morphology, or physiology that allow an organism to better exploit its 

environment or compete with other organisms for resources [26]. Some nonsense mutations appear 

to be beneficial. 
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1.5 Nonsense-mediated decay 

NMD is a metabolic pathway operating at the interface between transcription and translation. NMD 

often has the ability to distinguish an mRNA carrying a PTC rather than the normal stop codon. It also 

regulates the abundance of a large number of cellular RNAs. In other words, NMD also targets non-

mutant transcripts, and its regulation of normal gene expression impacts a wide range of physiological 

processes including cell differentiation, responsiveness to stress and development of disease [27]. 

Maintaining intracellular homeostasis requires precise and tightly controlled gene expression 

mechanisms, which are controlled by multiple levels of regulation so that damaged genes and 

redundant transcripts are removed. NMD (nonsense-mediated mRNA decay) is one of the most 

essential RNA quality control processes and gene regulatory mechanisms, which recognises and 

degrades PTC-containing mRNAs. NMD is a metabolic pathway operating at the interface between 

transcription and translation. The course of correct translation termination is shown in the Figure 3. 

NMDs exert control not only over defective transcripts, but also over normal transcripts or non-coding 

RNAs, and genes containing miRNA and snoRNA sequences and its regulation of normal gene 

expression impacts a wide range of physiological processes including cell differentiation, 

responsiveness to stress and development of disease. The miRNAs (microRNAs) are involved in RNA 

silencing and post-transcriptional regulation of gene expression. snoRNAs are involved after 

transcription to pre-rRNA molecules. The pre-rRNA undergoes a complex pattern of nucleoside 

modifications, include methylations and pseudouridylations, guided by snoRNAs, prior to cleavage by 

exo- and endonucleases, NMD activity engages different enzymes to destroy the transcript.  

Translation of aberrant mRNAs could, in some cases, lead to deleterious gain-of-function or dominant-

negative activity of the resulting proteins. As well as this, NMD uses multiple proteins at multiple stages 

and is an extremely complex process that also affects the development and adaptation of organisms 

to changing environmental conditions through the regulation of gene expression [28–30]. 
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Figure 4. The course of correct translation termination. Proper translation termination depends on a stimulating signal from 
the poly(A) tail region. Source of image  Mühlemann et al (2008) and Sulkowska et al (2017) [11,31]. 
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The mechanism for recognizing mRNA molecules to be degraded through the NMD pathway is not fully 

understood. The signal to initiate NMD appears to be the stopping of the ribosome at a mislocated 

stop codon or a translation termination that is too late. Most often, the recognition of transcripts 

depends on the context of the 3' end (3'UTR, untranslated region), including the poly(A) tail and the 

poly(A)-binding protein (PABP) that binds this structure, and the course of translation. During 

translation of normal mRNA, protein factors stabilizing the non-coding end of the 3' mRNA are likely 

to interact with components of the ribosome retained at the stop codon. This interaction induces 

conformational changes of ribonucleoprotein molecules that stabilize the transcript and direct it to 

subsequent rounds of translation. Disruption of this interaction by an elongated non-coding end of the 

3'UTR, e.g. in yeast, or in mammals the presence of an intron downstream of the stop codon, results 

in NMD activation [28,29]. 

Several versions of the NMD metabolic pathway description are available in the literature. One model 

of NMD is an exon junction complex (EJC)-based metabolic pathway, Figure 4. The EJC is a multiprotein 

complex that binds to mRNAs of more than 24 base pairs in size, resulting from intron excision.  During 

normal translation, the EJC complex is removed from the mRNA by the ribosome, but when a defective 

EJC transcript is recognized, it becomes anchored to the mRNA and provides a platform on which the 

NMD complex is built [11,31]. 
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Figure 5. Incorrect termination of translation. Intron based model dependent on EJC.  Source of image  Mühlemann et al 

(2008) and Sulkowska et al (2017)  [11,31]. 
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In the case of a PTC located 50-55 base pairs upstream of an exon-exon binding site, the ribosome is 

immobilized together with the translation termination factors eRF1 and eRF3 (eukaryotic release 

factor), which do not interact with PABP, as occurs during normal translation. As a result of this process, 

the eRF1 and eRF3 proteins can bind to the SMG1 kinase (suppressors with morphogenetic effects on 

genitalia) and the UPF1 (up-frame shift) helicase to form the SURF complex (SMG1-eRF1-eRF3-UPF1 

complex). The UPF2 and UPF3 proteins present in the EJC complex form a physical connection with 

SURF, leading to phosphorylation of UPF1 by SMG1 This reaction is a key step and allows the formation 

of phosphorylated amino acid residues, which are recognized and bound by SMG5-SMG7 proteins 

through a characteristic 14-3-3 domain. Previous data indicated that the recognition of transcripts 

from PTCs occurs during the first round of translation, when the mRNA is still attached to the EJC and 

to the nuclear cap structure-binding complex (CBC). However, more recent studies using mammalian 

cells have revealed that NMD activation is not only restricted to the first round of translation and also 

occurs for mRNAs with the cytoplasmic protein eIF4E present on the cap structure. More common in 

yeast cells, but also present in mammals and in the plant world, a context-dependent model of NMD 

is known for the 3'UTR sequence, named faux 3'UTR (Figure 5). During the normal course of translation, 

the cytoplasmic PABPC proteins stabilizing the poly(A) tail interact with the stop codon of the right 

stop codon of the ribosome and the eRF3 and eRF1 factors to allow translation termination and release 

of newly formed polypeptides. Excessive distance between the stalled ribosome and PABPC proteins, 

resulting in a loss of interaction between them provides information about transcript abnormalities 

triggering NMD activation and subsequently leading to the recruitment of UPF and SMG proteins 

[11,31]. 
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Figure 6. . Incorrect termination of translation. A context-dependent model of NMD based on the 3'UTR sequence. Source of 

image  Mühlemann et al (2008) and Sulkowska et al (2017)  [11,31]. 
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1.6 Association methods 

Increased availability of high genotyping technology together with advances in DNA sequencing and 

the development of statistical methodology appropriate for genome-wide association scan mapping is 

meaningful for the improvement of worldwide healthcare. The progress of new technologies in the 

field of medical and genetic studies is enabling the utilization of new, advanced methodologically and 

complex studies. Besides new types of equipment this requires bioinformation technology and in 

particular biostatistical methodologies and algorithms.  

Rapid progress in the development of genomic tools, including genome sequencing and high-density 

single nucleotide polymorphism (SNP) genotyping has enabled the development of new powerful 

approaches to the mapping of complex traits and to the subsequent identification of causal genes. The 

availability of large-scale genomic data has enabled the development of personalized medicine 

approaches. By analyzing an individual's genetic makeup, theoretically, and sometimes in practice, 

researchers can tailor treatments to specific patients based on their unique genetic profile. This has 

the potential to improve patient outcomes and reduce healthcare costs by avoiding ineffective 

treatments [32]. 

GWAS (a genome-wide association study) has revolutionized the field of genetics and has helped in 

identifying genetic variants that are associated with various diseases such as cancer, diabetes, and 

heart disease. A GWAS enables the testing of hundreds of thousands of genetic variants across many 

genomes in order to find those statistically associated with a specific trait or disorder (which are then 

called genomic risk loci or genetic susceptibility loci) [33].The goal of GWASs is to identify associations 

between genotypes and phenotypes using copy number variants or sequence variations in the human 

genome (Figure 7); however the most frequently used genetic variants are SNPs (single nucleotide 

polymorphisms). During GWASs testing differences are analyzed in the allele frequency of genetic 

variants between individuals who are ancestrally similar but distinct according to the phenotypes taken 

into consideration.  
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Figure 7. GWAS study. Source of image Palsson et al (2019) [34]. 

The results obtained thanks to GWASs have a range of applications in many fields including social 

sciences, ecology, genetics, medicine and more. Collected data can be used for better understanding 

of a phenotype’s biology, estimating its heritability and also calculating genetic correlations or making 

clinical risk prediction. GWAS results can inform drug development by identifying potential targets for 

therapeutic interventions, such as for example drug development programs, inferring potential causal 

relationships between risk factors and associated health outcomes. GWASs have the potential to 

greatly impact our understanding and treatment of complex diseases. By understanding the genetic 

basis of a disease, researchers can develop drugs that target specific pathways or proteins involved in 

the disease process. They can also acquire data from trait-associated genetic variants that can be used 

as control variables in epidemiology. Further, results can be used to predict an individual’s risk for 

physical and mental disease based on their genetic profile. Finally, results can be used to create 

biological markers for many diseases and can be used for making a better diagnosis of many diseases 

[33,35].  
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Figure 8. GWAS algorithm 

The experimentation for a GWAS is associated with several steps (Figure 7, Figure 8) and requires 

proper preparation and tools. The phases of GWAS include: 

1) collecting of DNA probes and phenotypic information (age, sex, disease status, etc.)  

2) genotyping (GWAS arrays)  

3) quality control 

4) imputation of untyped variants using haplotype phasing and reference  

5) statistical test for association (and, if necessary, a meta-analysis)   

6) an independent replication 

7) interpretation of the results by conducting multiple post-GWAS analyses  

Errors may enter the a GWAS during several steps and therefore carefulness and appropriate tools are 

required while setting up the examination. To avoid several problems, an error- and bias-standardized 

quality and analysis protocol is advised to perform a GWAS [33,35].  

In February 2023 more than 12 GWAS reports were made with broad scope (Figure 10) and were 

published at the NCBI pages. In recent available data from 2019, the GWAS catalogue contained 

157 000 associations and Figure 9 demonstrates the increasing number of  associations from 2006 to 

2019. 

 

The present study in this thesis is related to a GWAS (genome-wide association study) as it utilized a 

database obtained through an agreement with the University of Lodz, which contained 5,600 samples 

from healthy people in Poland, with 500,000 SNPs, including 141 PTC SNPs. The Lodz study's original 

objective was to determine, by means of case-control association analysis, how polymorphic risk 

variants in the FTO/IRXB region affect obesity and/or overweight in the Polish population, and this was 

successfully published in 2017 [36]. 

 



24 
 

 

Figure 9. Published GWASs in particular years: A) June 2006, B) June 2011, C) July 2019. Source of image: Buniello et al 

(2019) [37] 

 



25 
 

 

 

Figure 10. GWAS associations subjects. Source of image:  [https://www.ebi.ac.uk/gwas/diagram] 
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2. Aims and goals 

The aims of the present thesis were to perform regressions between genetic models of selected 

pretermination codon SNPs and several phenotypes (listed below), using data obtained from a large 

database of 500 000 SNPs each from a large sample with almost 6000 healthy subjects from the entire 

geographical region of Poland: 

a) Analysis of possible associations between pretermination codons and age (life span); 

b) Analysis of possible associations between pretermination codons and the number of children 

(fertility); 

c) Analysis of possible associations between pretermination codons and body mass index 

(obesity and overweight). 
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3. Methodology 

 

3.1 Sample and data collection 

All procedures in section 3.1.1. were performed or coordinated by members of the Biobank Lab of the 

University of Łódź. All further procedures, from 3.1.2. onwards, were performed by the author of this 

thesis. 

 

3. 1. 1. Data collection. 

 

The data was collected as a part of the TESTOPLEK study, which was carried out between 2010 and 

2012. The data was registered as the “POPULOUS” collection at the Biobank Lab of The Department of 

Molecular Biophysics of The University of Łódź [36]. A reputable public opinion polling and surveying 

firm carried out the sampling (SMG/KRC Poland, a Millward Brown subsidiary, Warsaw, Poland). Each 

participant completed the questionnaire and provided written informed consent. Each person's saliva 

was put into an Oragene OG-500 DNA collection/storage container (from DNA Genotek, Ontario, 

Canada). The Review Board of the University of Lodz (KBBN-UL/II/2014) approved the TESTOPLEK 

study. The latest Helsinki Declaration (World Medical Association Declaration of Helsiniki; 

www.wma.net), which establishes ethical guidelines for medical research involving humans, was 

followed. 

Initially more than 10 000 people in Poland were surveyed, and from successful saliva and 

questionnaire collection,  an initial study group was formed with a total of 6047 participants. Bone 

marrow transplantation, diabetes, leukemia, and malignancy were exclusion criteria and participants 

(n = 488) who disclosed any of these illnesses were excluded: 5559 subjects declared themselves to be 

in good health and this study group was made up of 2747 men and 2812 women. 

DNA material storage and isolation: 

The samples of saliva were kept at room temperature until the first processing step. 500 mL of saliva 

were manually extracted for DNA isolation using the manufacturer's method (PrepitL2P, PD-PR-

052,DNA Genotek). The amount of elution was 50 μl. The broad range Quant-iTTMdsDNA Broad Range 

Assay Kit (InvitrogenTM, Carlsbad, CA, USA) was used to measure the amount of DNA. As part of the 

Biobank Lab of the Łódź University laboratory's regular protocol for DNA quality control, all DNA 

samples underwent a PCR reaction to verify their sex [32]. Only DNA samples with the right 

concentration and purity were used, and these were diluted in sterile DNase-free water to 50 ng/l. The 

http://www.wma.net/
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same fluorometric approach was used to recheck the concentration. The standard operating 

procedures of the Biobank Lab were followed for all laboratory processes relating to sample 

management. 

Genotyping: 

According to the manufacturer's recommended procedure, a total of 5559 DNA samples were 

genotyped for more than 550 000 SNPs using 24x1 InfiniumHTS Human Core Exome BeadChips 

(Illumina Inc., San Diego, CA, USA). DNA samples were amplified, then fragmented enzymatically and 

hybridized to the BeadChips. The BeadChips underwent extension and X-staining procedures after 

that. In another step, iScan was used to scan the BeadChips (Illumina Inc., SanDiego, CA, USA). The 

Genotyping Module was used to transfer unprocessed fluorescence intensities into GenomeStudio. All 

of the data underwent rigorous quality control, including sample deletion (n = 141) if the call rate and 

10% GenCall parameter fell below 0.94 and 0.40, respectively.  

3.1.2. Genotype quality control: 

Before any files were generated for additional examination, a complete control analysis was 

performed. Data from SNPs that met all quality control standards were chosen for association studies, 

and are referred to as "populous data". Further exclusion criteria were: genotyping efficiency lower 

than 98% and a minimum minor allele frequency (MAF) of 1%. The genotype data were exported from 

the Genome Studio software using a PLINK INPUT report plug-in into the files .MAP and.PED, which 

could be easily imported into R and/or PLINK. The manufacturer's website 

[http://emea.support.illumina.com/downloads/infinium-coreexome-24-v1-1-support-

files.html?langsel=/pl/] provides another file type (a compressed  .txt file). This file was downloaded 

and included the names of the Illumina SNPs as well as, if available, the corresponding rs number 

(produced at the NCBI dbSNP Short Genetic Variations database; https://www.ncbi.nlm.nih.gov/SNP). 

The Populous database exported a .txt file containing phenotypic information, including the patient's 

status (healthy (1) or sick (2)), sex (female (1), male (2)), year of birth, district, and the number of 

children. Age was determined by deducting the birth year from 2012 and phenotype information 

related to the patient's condition in 2012 was available. 
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3.2 Statistical analysis 

3.2.1  Data preparation 

The data file was extracted from the POPULOUS database with a script, kindly provided by Dr. Thierry 

van de Wetering. 

The script used external sources to create a list of Single Nucleotide Polymorphisms (SNPs) to be 

compared with Illumina data, and assigned base-pair positions according to the Genome Reference 

Consortium Human Build 37 (GRCh37). The R statistical platform, Rstudio, PLINK, and Notepad++ were 

used to develop the Analysis Script, which contained R coding and a PLINK coding shell. The script 

allowed the user to define various parameters, such as whether R warnings should be kept on or off, 

whether deletions or insertions should be included or excluded from the analysis, and whether 

subjects with unknown sex should be included or excluded. The script also allowed the user to define 

the minimum percentage of subjects which have to be genotyped and the years of birth (YoB) groups. 

The script included a Region Analysis and a SNP Analysis, and PLINK was run within R to analyze the 

data. Finally, the produced .ped and .map files were imported and processed [38]. 

The script withdrew the SNPs from POPULOUS database from a .txt file provided by the author of this 

thesis, which had list of 246 SNPs that lead to the introduction of a PTC, identified by Fujikura et al. 

[22]. A total of 141 SNPs were found in the POPULOUS database. In the next stage the genotype data 

was merged with available metadata (age, sex, district , BMI, NCI). The patients with all phenotype 

data missing were removed, leaving a total of 5095 subjects for analysis. 

BMI categorization:  

The patients were categorized using WHO (World Health Organization) BMI (Body Mass Index) 

classification criteria for adults: 

BMI below 18.5 – Underweight, BMI between 18.5 and 24.9 - Normal weight, BMI between 25 and 

29.9 – Overweight, BMI greater/equal 30 – Obesity. 

 

NCI subject subgroup 

Previous researchers have suggested that an association analysis with numbers of children (NCI) should 

be conducted in a group who had completed their reproductive period. Barban et al. (2016) defined 

this as : age ≥ 45 women; age ≥ 55 men [39]. The research of Barban et al. (2016) involved a genome-

wide association study (GWAS) of reproductive behavior in over 250,000 individuals of European 
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ancestry. The study found 12 loci that were significantly associated with reproductive behavior, 

including age at first birth and number of children. A second dataset, with the NCI subject subgroup, 

using the Barban et al. age criteria, was therefore created.  

3.2.2  The graphical representation of PTC locations on 

chromosomes 
 

The graphical presentation of PTC’s location on chromosomes was performed using the R 

[chromoMap] package. 

The R chromoMap package provides interactive and customizable visualization of chromosomes or 

chromosomal regions, allowing users to map chromosome features and associated data. The package 

allows for visualizing polyploidy, creating high-resolution maps, annotating groups of elements with 

distinct colors, and visualizing multi-omics data using a variety of plot types. Other features include 

creating 2D chromosome plots, visualizing correlations between genomic features, adjusting 

chromosome range or visualizing specific regions such as genes/SNPs, adding labels and hyperlinks to 

the plot, and saving plots as HTML documents. The package documentation is also available as an R 

vignette. 

The function required 2 data input files; chromosome name and length file and annotation (SNP) 

chromosomal position file.  

All data were obtained from NCBI databases [https://ncbi.nlm.nih.gov/] . 

Coding: 
A<- read.table('chrdata.txt') 
B<-read.table('annot.txt', sep="\t") 
chromoMap(list(A),list(B), chr_color = 'gray', anno_col = "black", labels= "T", 
          label_angle = -65, 
          ch_gap= 9, 
          chr_length = 10, 
          chr_width = 45, 
          canvas_width = 1150,label_font= 12, 
          segment_annotation=T, 
          text_font_size=c(15)) 
dev.off() 
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3.2.3  Standardized effect sizes 

 

The standardized effect sizes used in this thesis were: Cohen’s d, Spearman’s r and odds ratio. 

Standardized effect size is a statistical measure that quantifies the magnitude of a difference or 

relationship between two groups or variables relative to measured variance (in the discussion below 

it is referred to simply as “effect size”). It provides information on the practical or clinical significance 

of the difference or relationship, which is often not apparent from p-values or statistical significance 

alone [40]. 

The effect size used to measure the difference in means between two quantitative variables 

in this thesis was Cohen’s d. Cohen's d is a widely used measure of standardized effect size, typically 

used to quantify the difference between two means. It is calculated by dividing the difference between 

the means of two groups by the pooled standard deviation of the two groups. Cohen's d is expressed 

in units of standard deviation, which makes it easy to interpret and compare across studies. A small 

Cohen's d effect size is typically considered to be 0.2, a medium effect size is 0.5, and a large effect size 

is 0.8 or greater. It was further expanded in Sawilowsky’s work to: very small 0.01, very large 1.2 and 

huge 2.0 [41]. Cohen's d is a useful tool in meta-analyses and in determining the practical significance 

of statistical findings. It provides a standardized measure of the difference between two groups, 

allowing researchers to compare standardized effect sizes across studies and to draw more general 

conclusions about the strength of an effect [42]. 

The effect size used to measure the strength of correlation in this thesis was Spearman’s “r”. 

The "r" effect size refers specifically to the correlation coefficient, which measures the strength and 

direction of the linear relationship between two variables. The value of r ranges from -1 to +1, with -1 

indicating a perfect negative correlation, 0 indicating no correlation, and +1 indicating a perfect 

positive correlation. Cohen (1988) proposed a widely used classification system for interpreting the 

magnitude of r values. According to this system, an r value of 0.1 indicates a small effect size, 0.3 

indicates a medium effect size, and 0.5 indicates a large effect size. However, it should be noted that 

the interpretation of effect sizes may vary depending on the context and research question. Overall, 

the r effect size is a useful statistical measure that provides information on the strength and direction 

of the linear relationship between two variables. [40,42,43]. 

       The effect size used to measure the risk of obesity as a qualitative variable in this thesis was the 

odds ratio. The odds ratio (OR) is a statistical measure used to quantify the strength of the association 

between two variables in a case-control or cohort study. It represents the ratio of the odds of an event 

occurring in one group compared to the odds of the event occurring in another group. An OR of 1 
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indicates no association between the variables, while an OR greater than 1 indicates a positive 

association and an OR less than 1 indicates a negative association. The odds ratio is a useful tool in 

medical research and epidemiology, allowing researchers to determine the risk of a disease or 

condition in a certain group compared to another group. It is particularly useful in case-control studies, 

where the odds of exposure to a risk factor can be compared between cases and controls [44]. 

 

3.2.4  Adjustor analyses 

 

Adjustor analysis was performed using the R [smplot] package [45]. The smplot package provides 

several functions for creating scatterplots with smoothed trend lines, including sm.scatterplot and 

sm.densityplot. These functions allow the user to specify various parameters such as the type of 

smoothing algorithm to use, the degree of smoothing, and the colors and shapes of the data points. 

The graphs created with this package include Spearman’s rho correlation coefficient value and 

corresponding p.value.  

All statistical analyses were two-tailed and statistical significance level was set to p.value < 0.05, with 

or without Bonferroni correction. 

 

3.2.5  Association analyses  

 

All statistical association analyses for this thesis were performed using the R statistical platform 

(version 3.4; https://cran.r-project.org) [46] 

For association analysis with quantitative variables, linear and logistic regression models, implemented 

in the R SNPassoc package, were used. All statistical tests were two-tailed and two statistical 

significance p.value thresholds were set, nominal p < 0.05 and after Bonferroni correction < (0.05/141 

SNPs analyzed) = 3.55 x 10-4. 

SNPassoc is an R package designed for genetic association studies. It provides a suite of tools for 

performing various types of genetic association analyses, including single SNP tests, haplotype analysis, 

gene-based tests, and rare variant analysis. The package also includes functions for quality control and 

data cleaning of genetic data. 

 

https://cran.r-project.org/
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Some of the key features of SNPassoc include: 

• Single SNP analysis: SNPassoc provides several tests for single SNP analysis, including chi-

square tests, logistic regression, and linear regression. These tests can be performed on both 

binary and continuous traits.  

• Haplotype analysis: SNPassoc allows users to perform haplotype analysis using several 

methods, including haplo.stats, THESIAS, and PLINK. 

• Gene-based analysis: SNPassoc provides several gene-based tests, including VEGAS, GATES, 

and GRASS. These tests can be used to identify genes that are associated with a trait of interest. 

• Rare variant analysis: SNPassoc includes functions for performing rare variant analysis using 

several methods, including SKAT, SKAT-O, and burden tests. 

• Quality control: SNPassoc includes functions for performing quality control and data cleaning 

of genetic data, such as checking for missing data, checking for genotyping errors, and checking 

for population stratification. 

 

Overall, SNPassoc is a powerful and flexible package for performing genetic association analyses in R. 

It provides a wide range of tools for analyzing genetic data, making it a useful tool for researchers in 

the field of genetic epidemiology [47]. 

Linear regression is a commonly used model in genetic association studies, as it can be used to test for 

association between a single genetic variant and a phenotype [48–51]. The association analysis results 

for 5 genetic models (dominant, recessive, overdominant, log-additive) were tabulated (available as 

supplementary tables on CD), and a Manhattan type plot was generated with the use of that data.  

A Manhattan plot is a type of plot that is commonly used in genome-wide association studies (GWAS) 

to visualize the results of SNP association tests across the genome. The plot shows the negative log10 

transformed p-values on the y-axis and the SNP name x-axis. Additionally two horizontal lines, 

representing p.value thresholds were added ( -log10(0.05) =1.3, -log10(3.55 * 10-4) = 3.45 ). Potentially 

significant clinical results were highlighted as blue, if the p.value passed nominal p.value threshold and 

red if the p.value passed Bonferroni correction p.value threshold. The results that passed at least 

nominal p.value threshold were tabulated, sample size, mean, standard errors, the mean difference 

and its 95% confidence interval compared to the most frequent homozygous genotype, p-value for an 

overall gene effect and the Akaike Information Criterion (AIC) for each genetic model were presented.   

Akaike Information Criterion (AIC) is a statistical measure used to evaluate the relative goodness of fit 

of different models to a given set of data. The AIC is based on the principle of maximum likelihood, 
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which seeks to find the model parameters that maximize the likelihood of the observed data. AIC 

estimates the amount of information lost when a given model is used to approximate the true data-

generating process, with the aim of identifying the model that strikes the best balance between 

goodness of fit and parsimony (i.e., simplicity). According to Burnham and Anderson (2002), AIC is 

defined as follows [52]: 

AIC = -2 log(L) + 2k 

where L is the maximized likelihood of the model, and k is the number of parameters in the model. The 

first term, -2 log(L), is a measure of the goodness of fit of the model, while the second term, 2k, 

penalizes the model for having too many parameters. The model with the lowest AIC value is 

considered to be the best model for the given data. AIC has several advantages over other model 

selection criteria, such as the Bayesian Information Criterion (BIC), including its ability to handle small 

sample sizes and its focus on predictive accuracy rather than parameter estimation. However, it also 

has some limitations, such as its reliance on asymptotic theory and the fact that it assumes the true 

model is among the candidate models being compared [53].  

The main genetic models thought to be most relevant to potential clinical significance that were taken 

under consideration in this study were mostly: the dominant model[54] and the recessive model[55–

57]. There are no reports of PTC inheritance with overdominant or additive genetic models. 

Coding used for the regression models was: 

ANALYSIS <-setupSNP(DATA_SET,colSNPs = c(13:ncol(DATA)),sep="") 

# 

TABLE_PHENOTYPE<-WGassociation(PHENOTYPE(continuous 

variable)~Adjustor1+Adjustor2…,data=ANALYSIS,genotypingRate = 0.1) 

e.g 

TABLE_BMI<-WGassociation(BMI~YoB+GENDER,data=ANALYSIS,genotypingRate = 0.1) 

 

BMI category – analysis 

All statistical association analyses were performed in an R environment. For the qualitative variable  of 

BMI categories versus SNP for dominant and recessive models, the Fisher exact test and Cochran 

Armitage trend test were used. Statistical significance level was set to p <0.05.  



 

4. RESULTS 

4.1 Group characteristics 

4.1.1  Summary of the group 

 

From the initial 5559 healthy subjects, patients with missing data (in age, BMI and NCI) were removed, 

giving a study group with a total of 5095 subjects from all 16 districts in Poland. 

Table 3 shows that 2605 (51.1%) subjects were female and 2490 (48.9%) male. The average age was 

42.4 years old (sd =14.8), the number of children per individual was 1.58 (sd= 1.52) and mean body 

mass index (BMI) was 25.3 (sd = 4.55). The subjects were divided into four BMI groups: 185 (3.63%) 

subjects were qualified to the underweight group, 2472 (48.5%) to the normal weight group, 1698 

(33.3%) to the overweight group and 742 (14.6%) to the obesity group. The qualification criteria for 

the BMI groups are described in the methodology Data preparation section. There were 45 subjects 

with missing data of patient’s age and 1 subject without number of children.  

In total 141 SNPs that lead to nonsense mutations were found and data for these was drawn 

from the POPULOUS database. 
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Table 3.Subject Characteristics 

Variable 

 Number of 

subjects with 

data available 

(N)   

Number of 

subjects in 

sub-groups, n 

(%)  

 Mean (s.d.) 

Total number of 

subjects 
5095 

 
             

SEX: 

Female 
     2605 (51.1%)  

Male      2490 (48.9%)  

Age 5050  42.4 (14.8)  

Number of 

children per 

individual 

5094 

 

1.58 (1.52)  

Body Mass Index 

(BMI) 
5095 

 
25.3 (4.55)  

BMI GROUP: 5095               

Underweight      185 (3.63%)   

Normal weight      2472 (48.5%)  

Overweight      1696 (33.3%)  

Obesity      742 (14.6%)   

 

N- sample size; for qualitative variable n (%) of the group is presented, for quantitative mean and (standard deviation). 
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Figure 11. Comparison of age to body mass index in the Polish population. Line drawn from  
linear model approximation (not used in statistical analysis). 

Figure 12. Comparison of age to body mass index in female and male groups. Lines drawn from  linear model 
approximations (not used in statistical analysis). 

4.1.2  Adjustors 

 

An analysis of correlations between the variables representing the analyzed phenotypes was 

conducted in order to determine any intercorrelation and possible interference on later obtained 

results.  

 

 

 

 

 

 

 

 

 

 

 A correlation of medium (r = 0.33, p< 0.05) effect size was detected between patient’s age and body 

mass index, Figure 11.  Additionally, upon separate analyses in females and males, trends with 

different effects were observed Figure 12.  
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The mean BMI value in the female group was 24.67 (sd= 4.86) kg/m2 and 26.00 (sd = 4.09) kg/m2 in the 

male group. The difference in means (female minus male data) was -1.32 kg/m2 (95% CI: -1.57 lower, 

-1.07 upper, p.value < 0.05) Table 4.  

Table 4. Summary of body mass indices in the female and male populations (all values in units of kg/m2) 

Sex n mean sd median min max range se T test statistics for 

difference in means 

Female 2605 24.67 4.86 23.74 14.01 62.09 48.09 0.10 diff 95% CI : 

 -1.57           -1.08 

t = -10.55,  

 p-value < 2.2e-16 

Male 2490 26.00 4.09 25.61 14.85 51.93 37.08 0.08 

n- sample size; sd- standard deviation; se – standard error; CI- confidence intervals lower-upper 

The total population was not homogeneous due to differences between the groups. The effect of age 

on BMI was stronger in the female group (r= 0.42) than in the male group (r = 0.25) (Figure 12). 

Additionally, the difference in mean values lies on the edge of a BMI group qualification criterion, 

which might impact the qualitative analysis. following these discoveries, it was determined to perform 

the genotype association analyses with BMI using adjustments for age and sex.  

 

 

 

 

 

 

 

 

Figure 13. Comparison of age to number of children born (NCI) in female and male groups. Lines drawn from  linear model 
approximations (not used in statistical analysis). 

 

Another dependency was graphically presented in Figure 13. There was strong (r > 0.5) correlation 

between the subject’s age and number of children born (NCI) per individual, r = 0.54 for females and 

r= 0.64 for males. The mean value of NCI in Female group was 1.75 ( sd= 1.54) and 1.4 (sd = 1.47) in 

male group Table 5.  
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Table 5. Summary of number of children per individual (NCI) in the female and male populations 

n- sample size; sd- standard deviation; se – standard error; CI- confidence intervals lower-upper 

The difference in means of number of children born was significantly different across districts Table 6. 

The lowest mean of number of children born was in Opolskie district, 1.08 children (sd=1.19), the 

highest was in Dolnośląskie district 1.76 children (sd=1.69).  

Table 6. Comparison of number of children born in different districts 

District n mean sd median min max range se 
Kruskal Wallis test 

statistics: 

Dolnośląskie 196 1.76 1.69 1 0 9 9 0.12 

Kruskal-Wallis chi-

squared = 34.11,  

df = 15, 

 p-value = 0.0033 

Kujawsko-Pomorskie 286 1.7 1.52 2 0 9 9 0.09 

Łódzkie 373 1.72 1.67 2 0 13 13 0.09 

Lubelskie 194 1.69 1.66 2 0 10 10 0.12 

Lubuskie 154 1.64 1.47 2 0 7 7 0.12 

Małopolskie 115 1.59 1.59 1 0 6 6 0.15 

Mazowieckie 462 1.56 1.46 1.5 0 8 8 0.07 

Opolskie 196 1.08 1.19 1 0 5 5 0.08 

Podkarpackie 397 1.68 1.71 1 0 10 10 0.09 

Podlaskie 231 1.63 1.41 2 0 6 6 0.09 

Pomorskie 396 1.46 1.37 1 0 8 8 0.07 

Śląskie 922 1.57 1.51 1 0 10 10 0.05 

Świętokrzyskie 79 1.66 1.42 2 0 6 6 0.16 

Warmińsko-

Mazurskie 
254 1.48 1.46 1 0 7 7 0.09 

Wielkopolskie 542 1.60 1.53 2 0 10 10 0.07 

Zachodniopomorskie 250 1.46 1.39 1 0 8 8 0.09 

 

Following this, it was decided to perform genotype association analysis with fertility (NCI) with age, 

sex and district adjustments.   

Sex n mean sd median min max range se T test statistics 

Female 2604 1.75 1.54 2 0 13 13 0.03 diff 95% CI : 

0.27             0.44 

t = 8.36 

p-value < 2.2e-16 

Male 2490 1.40 1.47 1 0 10 10 0.03 
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4.1.3  SNP data quality 

 

 

 

Figure 14. Missing genotype readings for selected RSs 

Data quality is presented graphically, Figure 14 and tabulated as a percentage of missing genotype 

readings for individual RSs in Table 5. SNPs missing the most data were: rs36078704 (66.1%, DDX49), 

rs76330087 (26.2%, ATP6V1G3) and rs62154921 (25.9%,VWA3B), Table 7. 72 RSs did not have any 

missing readings.  
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Table 7. Summary of missing genotype readings data for selected RS 

RS number 
Missing % of 

genotype 
RS number 

Missing % of 

genotype 
RS number 

Missing % of 

genotype 

rs34291832 0 rs76101114 0 rs4788587 0.2 

rs4639011 0 rs34960436 0 rs118004742 0.2 

rs3732781 0 rs78283108 0 rs117366703 0.3 

rs79892855 0 rs34931752 0 rs71377306 0.3 

rs76438938 0 rs3784589 0 rs545652 0.4 

rs74437357 0 rs57809907 0 rs8072510 0.5 

rs7447815 0 rs28413581 0 rs28602966 0.6 

rs1023840 0 rs150843673 0 rs499037 0.7 

rs10471773 0 rs36102575 0 rs2270416 0.7 

rs35391433 0 rs13338754 0 rs41291550 0.8 

rs12520799 0 rs11542462 0 rs2233919 0.8 

rs17184009 0 rs34381648 0 rs55727303 0.9 

rs3130453 0 rs74969489 0 rs10423255 1.5 

rs6907580 0 rs1043149 0 rs2708381 1.7 

rs34672740 0 rs35699176 0 rs61753375 1.7 

rs10237332 0 rs61751875 0 rs2235197 2.5 

rs67047829 0 rs17001893 0 rs115917139 3.5 

rs2293766 0 rs35001809 0 rs61750839 4.6 

rs10261977 0 rs61737751 0 rs1790218 4.9 

rs328 0 rs111350153 0 rs3213755 5.2 

rs117752382 0 rs41282820 0 rs138377917 7.5 

rs2039381 0 rs4148974 0 rs541169 11.8 

rs10981589 0 rs28502153 0 rs35400274 12.1 

rs45579335 0 rs35032582 0 rs7499011 20.6 

rs1476860 0 rs62239058 0 rs114730569 24.5 

rs35898523 0 rs75411676 0.1 rs1043261 24.5 

rs1044261 0 rs72856718 0.1 rs6671527 24.6 

rs7904983 0 rs45621032 0.1 rs863362 24.6 

rs57026471 0 rs8192646 0.1 rs5744168 24.6 

rs2647574 0 rs34427887 0.1 rs112050262 24.7 

rs16930998 0 rs9886752 0.1 rs114429815 24.8 

rs4910844 0 rs12240276 0.1 rs116389032 24.9 

rs61730422 0 rs1815739 0.1 rs74118444 24.9 

rs35233100 0 rs61942233 0.1 rs2273865 25 

rs7120775 0 rs80072371 0.1 rs12077871 25.1 

rs10838851 0 rs41281112 0.1 rs850763 25.1 

rs1459101 0 rs2781377 0.1 rs1861050 25.1 
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rs11228710 0 rs183603441 0.1 rs61731313 25.1 

rs2298553 0 rs3812907 0.1 rs111696697 25.2 

rs11231341 0 rs12925771 0.1 rs112033303 25.2 

rs77002186 0 rs10491178 0.1 rs12568784 25.4 

rs35231465 0 rs17292725 0.1 rs12139100 25.5 

rs497116 0 rs74830030 0.1 rs2176186 25.6 

rs7485773 0 rs11913840 0.1 rs62154921 25.7 

rs16910526 0 rs2272754 0.2 rs76330087 25.9 

rs146753414 0 rs11071990 0.2 rs17602729 26.2 

rs34067666 0 rs4985556 0.2 rs36078704 66.1 
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4.1.4  Chromosomal localization of the SNPs 

 

 

Figure 15. Localization of the SNPs on chromosomes 1,2,3 

There were 14 PTC SNPs which were located on chromosome 1 (Figure 15): 

rs75411676  Chr1:12919891;     rs12139100 Chr1:20501582; rs114429815 Chr1:35227093; 

rs12077871 Chr1:40773150; rs6671527 Chr1:47080679; rs850763 Chr1:48708228; 

rs116389032 Chr1:109823457; rs17602729 Chr1:115236057; rs12568784 Chr1:152323132; 

rs74118444  Chr1:155291263; rs863362  Chr1:158549492; rs76330087 Chr1:198505831; 

rs5744168 Chr1:223285200; rs2273865 Chr1:236706300.  

There were 4 PTC SNPs located on chromosome 2: 

rs62154921  Chr2:98779439,  rs112050262  Chr2:108863758, rs34291832 Chr2:170387886,  

rs2176186 Chr2:228476140.   

There were 8 PTC SNPs located on chromosome 3: 

rs115917139 Chr3:9874914,  rs4639011 Chr3:32030998,  rs114730569 Chr3:52005638,  

rs1043261  Chr3:53899276, rs3732781 Chr3:113955187,   rs79892855 Chr3:113955726,   

rs76438938 Chr3:186461524, rs74437357 Chr3:193052769.  

Location of the rs79892855 overlaps with graphical grid of rs3732781, therefore only the second is 

presented in Figure 15 .  
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Figure 16. Localization of the SNPs on chromosomes 4,5,6 

 

 

There were 4 SNPs located on chromosome 4 (Figure 16): 

rs1861050 Chr4:15482360,  rs61731313  Chr4:53611484,  rs111696697 Chr4:70512787,  

rs112033303  Chr4:84206004.  

There were 5 SNPs located on chromosome 5: 

rs7447815 Chr5:1240757,   rs1023840 Chr5:41061715, rs10471773 Chr5:68616079,   

rs35391433 Chr5:94749787, rs12520799 Chr5:134782450.    

There were 9 SNPs located on chromosome 6: 

rs17184009 Chr6:29407955,   rs3130453 Chr6:31124849,   rs72856718 Chr6:31125257, 

rs45621032 Chr6:36274148, rs6907580  Chr6:117150008,  rs8192646 Chr6:132938842,  

rs34672740 Chr6:150387059,  rs34427887 Chr6:154567863,  rs2235197 Chr6:167709702.    

 

Location of rs72856718 overlaps with graphical grid of rs3130453, therefore only the second is 

presented in Figure 16.  
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Figure 17. Localization of the SNPs on chromosomes 7,8,9 

There were 4 SNP located on chromosome 7 (Figure 17): 

rs10237332 Chr7:63529269,   rs67047829 Chr7:64452738, rs2293766 Chr7:100371358,  

rs10261977  Chr7:149528262.  

There were 4 SNPs located on chromosome 8: 

rs328                Chr8:19819724,   rs117752382 Chr8:52284560,   rs138377917 Chr8:143763531, 

rs2272754  Chr8:144522387.  

Location of rs2272754 overlaps with graphical grid of rs138377917, therefore only 2nd is presented on 

Figure 17. 

 

There were 7 SNPs located on chromosome 9: 

 

rs2039381 Chr9:21481483,   rs10981589 Chr9:115759519,  rs45579335 Chr9:125239501,  

rs1476860 Chr9:125391241,   rs35898523 Chr9:136029645, rs55727303 Chr9:136131576,   

rs9886752 Chr9:139634495.  

Location of rs1476860 overlaps with graphical grid of rs45579335, therefore only 2nd is presented on 

Figure 17. Rs9886752 and rs55727303 location overlaps with graphical grid of rs35898523, therefore 

only last one is presented on Figure 17. 
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Figure 18. Localization of the SNPs on chromosomes 10,11,12 

 

 

There were 4 SNPs located on chromosome 10 (Figure 18) : 

rs1044261 Chr10:1065710,  rs12240276  Chr10:4889403, rs41291550  Chr10:96447562,  

rs7904983  Chr10:102056016.  

 

There were 19 SNPs located on chromosome 11: 

rs57026471 Chr11:5068662,   rs2647574 Chr11:5444136,   rs16930998 Chr11:5462702,  

rs4910844 Chr11:5776484,   rs61730422 Chr11:5989223,   rs35233100 Chr11:47306630,  

rs7120775 Chr11:48266736,   rs10838851  Chr11:48286231,  rs1459101 Chr11:55339652,   

rs117366703 Chr11:56086560,   rs11228710 Chr11:56431216,   rs499037  Chr11:59480952,  

rs2298553 Chr11:60265002,  rs11231341 Chr11:62848487,   rs77002186 Chr11:62850775,   

rs1790218 Chr11:63057925,   rs1815739 Chr11:66328095, rs35231465 Chr11:102584135,   

rs497116 Chr11:104763117.  

Rs16930998, rs4910844, rs61730422 localization overlaps with graphical grid of rs2647574, 

rs11228710 overlaps with rs117366703,  rs2298553 overlaps with rs499037.Rs77002186, rs1790218 

overlaps with rs11231341, therefore they’re not displayed on Figure 18. 

There were 6 SNPs located on chromosome 12: 

rs7485773 Chr12:7475081,   rs16910526 Chr12:10271087,   rs2708381 Chr12:11214145,   

rs146753414 Chr12:52711747,   rs2233919 Chr12:54577718,   rs61942233 Chr12:113403675.  
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Figure 19. Localization of the SNPs on chromosomes 13,14,15 

 

There were 3 SNPs located on chromosome 13 (Figure 19): 

 rs80072371 Chr13:46287373,   rs34067666  Chr13:53617309,  rs41281112 Chr13:100518634.    

There are 5 SNPs located on chromosome 14: 

rs76101114 Chr14:21500218,   rs34960436 Chr14:57947421,   rs2781377 Chr14:64560092,  

rs78283108 Chr14:94935628,   rs34931752 Chr14:102729886.    

There are 8 SNPs located on chromosome 15: 

rs3784589 Chr15:31294714,   rs61750839  Chr15:42162467, rs57809907 Chr15:55722882,  

rs11071990  Chr15:68497597,  rs28413581 Chr15:76016583,   rs183603441 Chr15:78807407,   

rs150843673  Chr15:81624929,  rs3812907 Chr15:97327393.   

 

 

Figure 20. Localization of the SNPs on chromosomes 16,17,18 
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There were 9 SNPs located on chromosome 16 (Figure 20): 

rs61753375 Chr16:1825982,   rs36102575 Chr16:48130781,   rs13338754  Chr16:55903554,   

rs4985556 Chr16:70694000,  rs4788587 Chr16:72001136,   rs12925771 Chr16:81199544,   

rs7499011 Chr16:81242198,   rs11542462 Chr16:82033810,   rs2270416 Chr16:89261482.   

Location of rs7499011 overlaps with graphical grid of rs12925771, therefore only 2nd is presented on 

Figure 20. 

There were 10 SNPs located on chromosome 17: 

rs35400274 Chr17:4803711,   rs8072510 Chr17:33772658,   rs3213755 Chr17:39197499,   

rs34381648  Chr17:39880966,  rs71377306 Chr17:45425287,   rs74969489 Chr17:45452257,   

rs118004742 Chr17:45468858,   rs10491178 Chr17:67149973,   rs545652 Chr17:72588806,   

rs1043149 Chr17:74077797.    

Location of rs118004742, rs74969489 overlaps with graphical grid of rs71377306, therefore only the 

last one is displayed on Figure 20. 

 

There were 2 SNPs located on chromosome 18: 

rs28602966 Chr18:658170,   rs17292725 Chr18:51880889.   

 

Figure 21. Localization of the SNPs on chromosomes 19,20,21,22 
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There were 10 SNPs located on chromosome 19 (Figure 21): 

rs35699176 Chr19:2936535,  rs74830030 Chr19:3789321, rs61751875 Chr19:9236969,  

rs17001893  Chr19:9237263,  rs36078704  Chr19:19039030,  rs35001809 Chr19:35718891,   

rs541169 Chr19:35719020,   rs10423255  Chr19:49445774,  rs61737751 Chr19:55019261,   

rs111350153  Chr19:57646393.  

Location of rs17001893 overlaps with graphical grid of rs61751875, therefore only 2nd is presented on 

Figure 21. Location of rs541169 overlaps with graphical grid of rs35001809, therefore only 2nd is 

presented on Figure 21. 

 

There was 1 SNP located on chromosome 20 : 

rs41282820 Chr20:36869005. 

 

There was 1 SNP located on chromosome 21: 

rs4148974  Chr21:44323720. 

There were 4 SNPs located on chromosome 22: 

rs28502153 Chr22:17469049   rs11913840 Chr22:18912677  rs35032582  Chr22:30891264  

rs62239058 Chr22:32643460  

   

There were no SNPs located on the sex chromosomes. 
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4.1.5  The frequency of particular nonsense mutations in the 

Polish population 

 

Table 8. Genotype and allele frequencies of selected PTCs in the Polish population - calculated from data from the 

POPULOUS database. 

 alleles major allele (%) Major allele homozygote Heterozygote 
Minor allele 

homozygote 

rs75411676 G/T 94.8 4559(89.603%) 529(10.397%) - 

rs12139100 A/G 50.2 1267(33.36%) 1279(33.676%) 1252(32.965%) 

rs114429815 T/C 50.4 1294(33.768%) 1278(33.351%) 1260(32.881%) 

rs12077871 G/A 50.6 1276(33.456%) 1311(34.373%) 1227(32.171%) 

rs6671527 A/G 50.2 1318(34.287%) 1223(31.816%) 1303(33.897%) 

rs850763 T/G 50.5 1288(33.761%) 1279(33.526%) 1248(32.713%) 

rs116389032 T/A 50.1 1285(33.595%) 1259(32.915%) 1281(33.49%) 

rs17602729 A/G 50.5 1257(33.44%) 1280(34.052%) 1222(32.509%) 

rs12568784 G/T 50.4 1283(33.745%) 1263(33.219%) 1256(33.035%) 

rs74118444 T/G 50.1 1259(32.915%) 1316(34.405%) 1250(32.68%) 

rs863362 T/C 50.2 1268(32.986%) 1324(34.443%) 1252(32.57%) 

rs76330087 G/A 50.1 1248(33.042%) 1291(34.181%) 1238(32.777%) 

rs5744168 G/A 51.1 1290(33.576%) 1347(35.06%) 1205(31.364%) 

rs2273865 A/T 51 1311(34.319%) 1272(33.298%) 1237(32.382%) 

rs62154921 T/G 50.4 1264(33.377%) 1286(33.958%) 1237(32.664%) 

rs112050262 A/G 50.3 1287(33.524%) 1287(33.524%) 1265(32.951%) 

rs34291832 G/C 99.2 5018(98.489%) 77(1.511%) - 

rs2176186 C/T 51.1 1287(33.94%) 1302(34.335%) 1203(31.725%) 

rs115917139 C/T 96.6 4592(93.371%) 314(6.385%) 12(0.244%) 

rs4639011 C/T 98 4887(95.918%) 208(4.082%) - 

rs114730569 A/G 50.5 1297(33.732%) 1288(33.498%) 1260(32.77%) 

rs1043261 T/C 50.1 1294(33.654%) 1264(32.874%) 1287(33.472%) 

rs3732781 A/C 70.4 2539(49.853%) 2090(41.037%) 464(9.111%) 

rs79892855 G/A 100 5094(99.98%) 1(0.02%) - 

rs76438938 C/T 96.9 4784(93.896%) 309(6.065%) 2(0.039%) 

rs74437357 G/A 97.9 4876(95.739%) 216(4.241%) 1(0.02%) 

rs1861050 T/C 50 1286(33.683%) 1246(32.635%) 1286(33.683%) 

rs61731313 C/T 50.5 1271(33.298%) 1311(34.346%) 1235(32.355%) 

rs111696697 A/T 50.2 1269(33.316%) 1285(33.736%) 1255(32.948%) 

rs112033303 A/T 50.4 1278(33.552%) 1283(33.683%) 1248(32.765%) 

rs7447815 C/G 63.7 2076(40.762%) 2332(45.788%) 685(13.45%) 

rs1023840 C/T 80.3 3286(64.495%) 1610(31.6%) 199(3.906%) 

rs10471773 G/A 97 4791(94.033%) 302(5.927%) 2(0.039%) 

rs35391433 C/T 97.8 4879(95.761%) 209(4.102%) 7(0.137%) 

rs12520799 T/A 59.6 1831(35.944%) 2408(47.271%) 855(16.784%) 

rs17184009 C/T 99 4989(97.92%) 106(2.08%) - 
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rs3130453 C/T 52.4 1399(27.469%) 2542(49.912%) 1152(22.619%) 

rs72856718 C/A 90.6 4182(82.193%) 855(16.804%) 51(1.002%) 

rs45621032 T/A 98.9 4978(97.761%) 114(2.239%) - 

rs6907580 G/A 95.1 4601(90.304%) 486(9.539%) 8(0.157%) 

rs8192646 C/T 95.2 4614(90.631%) 463(9.094%) 14(0.275%) 

rs34672740 C/A 100 5094(99.98%) 1(0.02%) - 

rs34427887 C/T 94.3 4527(88.957%) 548(10.768%) 14(0.275%) 

rs2235197 G/A 91.7 4186(84.225%) 740(14.889%) 44(0.885%) 

rs10237332 C/T 100 5092(99.941%) 3(0.059%) - 

rs67047829 G/A 90.6 4198(82.395%) 841(16.506%) 56(1.099%) 

rs2293766 G/A 99.5 5044(99.018%) 50(0.982%) - 

rs10261977 C/T 83.4 3542(69.519%) 1416(27.792%) 137(2.689%) 

rs328 C/G 91.6 4282(84.06%) 767(15.057%) 45(0.883%) 

rs117752382 A/T 98.7 4964(97.467%) 129(2.533%) - 

rs138377917 G/A 98.7 4589(97.39%) 119(2.525%) 4(0.085%) 

rs2272754 G/T 84.4 3634(71.437%) 1314(25.831%) 139(2.732%) 

rs2039381 G/A 99.2 5009(98.312%) 86(1.688%) - 

rs10981589 G/A 95.5 4649(91.282%) 432(8.482%) 12(0.236%) 

rs45579335 G/T 98.7 4957(97.311%) 137(2.689%) - 

rs1476860 G/A 69.6 2468(48.449%) 2154(42.285%) 472(9.266%) 

rs35898523 G/T 94.1 4513(88.594%) 559(10.974%) 22(0.432%) 

rs55727303 C/T 98.5 4899(96.991%) 152(3.009%) - 

rs9886752 G/A 88 3941(77.411%) 1078(21.175%) 72(1.414%) 

rs1044261 C/T 93.9 4487(88.067%) 596(11.698%) 12(0.236%) 

rs12240276 C/T 83 3493(68.598%) 1464(28.751%) 135(2.651%) 

rs41291550 T/A 99.7 5026(99.426%) 29(0.574%) - 

rs7904983 G/A 100 5092(99.961%) 2(0.039%) - 

rs57026471 C/T 86.9 3856(75.697%) 1140(22.379%) 98(1.924%) 

rs2647574 C/T 58 1715(33.667%) 2481(48.704%) 898(17.629%) 

rs16930998 G/A 98.1 4903(96.232%) 192(3.768%) - 

rs4910844 A/T 78.4 3138(61.614%) 1707(33.517%) 248(4.869%) 

rs61730422 G/A 91.5 4264(83.69%) 796(15.623%) 35(0.687%) 

rs35233100 C/T 94.2 4521(88.734%) 554(10.873%) 20(0.393%) 

rs7120775 C/G 86.4 3817(74.931%) 1169(22.949%) 108(2.12%) 

rs10838851 A/T 78.4 3112(61.079%) 1761(34.563%) 222(4.357%) 

rs1459101 C/T 75.3 2855(56.046%) 1959(38.457%) 280(5.497%) 

rs117366703 C/T 98.5 4924(96.948%) 153(3.012%) 2(0.039%) 

rs11228710 T/C 63.3 2045(40.145%) 2363(46.388%) 686(13.467%) 

rs499037 G/A 98.8 4938(97.57%) 123(2.43%) - 

rs2298553 T/C 50.6 1367(26.835%) 2426(47.625%) 1301(25.54%) 

rs11231341 C/A 79.5 3227(63.337%) 1649(32.365%) 219(4.298%) 

rs77002186 G/A 98.2 4910(96.369%) 185(3.631%) - 

rs1790218 A/G 57.5 1558(32.164%) 2458(50.743%) 828(17.093%) 

rs1815739 C/T 59.3 1815(35.651%) 2413(47.397%) 863(16.951%) 

rs35231465 G/A 98.1 4904(96.251%) 188(3.69%) 3(0.059%) 

rs497116 A 100 5095(100%) - - 

rs7485773 C/T 97.3 4820(94.64%) 272(5.341%) 1(0.02%) 
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rs16910526 A/C 92.7 4375(85.885%) 697(13.683%) 22(0.432%) 

rs2708381 C/T 73.3 2642(52.735%) 2063(41.178%) 305(6.088%) 

rs146753414 C/A 98.7 4961(97.389%) 132(2.591%) 1(0.02%) 

rs2233919 G/A 100 5049(99.921%) 4(0.079%) - 

rs61942233 C/T 98.7 4960(97.427%) 130(2.554%) 1(0.02%) 

rs80072371 C/A 93.7 4469(87.817%) 601(11.81%) 19(0.373%) 

rs34067666 C/T 98.7 4966(97.468%) 128(2.512%) 1(0.02%) 

rs41281112 C/T 98.3 4917(96.639%) 169(3.322%) 2(0.039%) 

rs76101114 C/G 99.9 5086(99.843%) 8(0.157%) - 

rs34960436 G/A 97.6 4850(95.191%) 245(4.809%) - 

rs2781377 G/A 93.7 4469(87.765%) 601(11.803%) 22(0.432%) 

rs78283108 G/A 99.9 5087(99.882%) 6(0.118%) - 

rs34931752 G/A 95.5 4637(91.047%) 450(8.836%) 6(0.118%) 

rs3784589 C/A 91.6 4270(83.808%) 796(15.623%) 29(0.569%) 

rs61750839 G/A 94.4 4321(88.891%) 540(11.109%) - 

rs57809907 C/A 94.4 4540(89.142%) 535(10.505%) 18(0.353%) 

rs11071990 G/A 99.6 5038(99.115%) 45(0.885%) - 

rs28413581 C/T 100 5093(99.98%) 1(0.02%) - 

rs183603441 T/A 98.9 4974(97.721%) 115(2.259%) 1(0.02%) 

rs150843673 G/T 98.3 4926(96.721%) 164(3.22%) 3(0.059%) 

rs3812907 C/T 89.3 4053(79.642%) 979(19.238%) 57(1.12%) 

rs61753375 C/T 99.3 4933(98.522%) 74(1.478%) - 

rs36102575 C/T 97.3 4824(94.681%) 266(5.221%) 5(0.098%) 

rs13338754 G/A 100 5092(99.941%) 3(0.059%) - 

rs4985556 C/A 89.9 4127(81.16%) 889(17.483%) 69(1.357%) 

rs4788587 G/A 82.2 3442(67.689%) 1476(29.027%) 167(3.284%) 

rs12925771 G/A 72.5 2656(52.181%) 2064(40.55%) 370(7.269%) 

rs7499011 G/A 54.5 1099(27.169%) 2209(54.611%) 737(18.22%) 

rs11542462 G/A 88.3 3976(78.037%) 1049(20.589%) 70(1.374%) 

rs2270416 C/A 97.3 4789(94.7%) 264(5.22%) 4(0.079%) 

rs35400274 G/A 85.9 3289(73.464%) 1116(24.927%) 72(1.608%) 

rs8072510 G/T 87.9 3907(77.107%) 1095(21.61%) 65(1.283%) 

rs3213755 G/A 85.5 3458(71.594%) 1344(27.826%) 28(0.58%) 

rs34381648 G/T 100 5092(99.941%) 3(0.059%) - 

rs71377306 C/T 95.3 4618(90.941%) 446(8.783%) 14(0.276%) 

rs74969489 A/T 98.4 4930(96.8%) 162(3.181%) 1(0.02%) 

rs118004742 T/G 94.4 4526(89.042%) 544(10.702%) 13(0.256%) 

rs10491178 G/A 95.3 4635(91.025%) 439(8.621%) 18(0.353%) 

rs545652 C/A 84.1 3573(70.376%) 1393(27.437%) 111(2.186%) 

rs1043149 C/T 82.6 3492(68.538%) 1435(28.165%) 168(3.297%) 

rs28602966 G/T 97.6 4822(95.24%) 240(4.74%) 1(0.02%) 

rs17292725 G/A 96.5 4736(93.082%) 348(6.84%) 4(0.079%) 

rs35699176 G/A 96.2 4710(92.462%) 377(7.401%) 7(0.137%) 

rs74830030 G/A 100 5088(99.98%) 1(0.02%) - 

rs61751875 G/A 100 5090(99.902%) 5(0.098%) - 

rs17001893 G/A 100 5093(99.961%) 2(0.039%) - 

rs36078704 C/T 95.7 1578(91.372%) 149(8.628%) - 
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rs35001809 C/T 96.6 4764(93.503%) 319(6.261%) 12(0.236%) 

rs541169 C/T 64.9 1859(41.375%) 2116(47.095%) 518(11.529%) 

rs10423255 C/T 92.6 4299(85.62%) 696(13.862%) 26(0.518%) 

rs61737751 C/T 95.8 4673(91.717%) 417(8.184%) 5(0.098%) 

rs111350153 T/A 98.2 4911(96.426%) 179(3.515%) 3(0.059%) 

rs41282820 G/A 98.2 4913(96.428%) 179(3.513%) 3(0.059%) 

rs4148974 C/T 94.9 4588(90.049%) 495(9.715%) 12(0.236%) 

rs28502153 C/A 63.9 2095(41.119%) 2323(45.594%) 677(13.288%) 

rs11913840 C/T 97.7 4862(95.521%) 224(4.401%) 4(0.079%) 

rs35032582 C 100 5094(100%) - - 

rs62239058 C/A 99 4993(98.037%) 100(1.963%) - 

 

The most frequent minor allele homozygotes in the Polish population were: rs6671527 (33.9%) , 

rs1861050 (33.68%), and rs116389032 (33.49%). rs6671527 is located in chr1:46615007 in the MOB 

kinase activator 3C (MOB3C) gene. Rs1861050 is located in chr4:15480736  in the coiled-coil and C2 

domain containing 2A (CC2D2A) gene. Rs116389032 is located in chr1:109280835 in the proline and 

serine rich coiled-coil 1 (PSRC1) gene.  

Minor allele homozygotes of 22 SNPs occurred with a frequency over 30%. Only 2 RSs were 

not present in the analyzed dataset – as these were monomorphic (rs35032582 and rs497116) Table 

8.  

The number of SNPs with minor allele frequencies above 5% was 141 – 64 = 77 (55%) and these SNPs 

should probably be regarded as having near-neutral selection.
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4.2 Association analysis – longevity 

 

 

Figure 22. Manhattan-type plot of the association p-value between selected SNPs versus patient's age for different genetic 
models. The analysis presented here shows that 5 SNPs passed the nominal p.value threshold (p<0.05) for either recessive or 
dominant model (blue stripes).  A high-resolution graph is available as electronic version on attached cd (named Figure 22). 

More detailed analyses for these 5 RSs were conducted.   

 

Table 9. Detailed rs112050262 association analysis with patient's age for selected genetic models 

  n mean se dif  lower upper p-value AIC 

Dominant   

A/A 1280 42 0.413 0   
0.22873 31324 

G/A-G/G 2524 42.61 0.2962 0.6133 -0.38523 1.6119 

Recessive                 

A/A-G/A 2551 42.04 0.2913 0   
0.03032 31321 

G/G 1253 43.15 0.4267 1.1093 0.105824 2.1127 

Overdominant   

A/A-G/G 2533 42.57 0.297 0   
0.34117 31325 

G/A 1271 42.08 0.4109 -0.4859 -1.48625 0.5145 

log-Additive   

0,1,2    0.5737 -0.00438 1.1517 0.05183 31322 

n- sample size, se – standard error, dif- means difference, lower/upper 95% Confidence Interval for dif, AIC- Akaike information 

criterion 



55 
 

 

The first SNP from the longevity analysis (from the Manhattan plot in Figure 22) which was analyzed 

that passed the nominal p.value threshold for the recessive model was rs112050262. This 

polymorphism is located in the SULT1C3 gene on chromosome 2.  Based on the lowest AIC value, the 

recessive model was the best fitted model for this dataset  

Table 9. This SNP did not exhibit Hardy Weinberg equilibrium (p <0.05). The mean value of age in the 

G/G (minor allele homozygote) group was 43.15 years old (y) (sd = 15.1, n= 1253). The mean value of 

age in A/A+G/A (major allele and heterozygote)  group was 42.04 y (sd= 14.7, n= 2551). The difference 

in means was 1.11 years with 95% CI lower 0.106, upper 2.113. The mean age of subjects with the G/G 

variant was slightly lower than the second group (Cohen’s d= 0.074, very small effect size due to the 

large variance). 

 

Table 10. Detailed rs41282820 association analysis with patient's age for selected genetic models 

  n mean se dif  lower upper p-value AIC 

Dominant                 

G/G 4870 42.34 0.2124 0   
0.03833 41570 

G/A-A/A 180 44.67 1.1125 2.332 0.1259 4.538 

Recessive                 

G/G-G/A 5047 42.42 0.2088 0   
0.59301 41574 

A/A 3 47 4 4.579 -12.212 21.37 

Overdominant                 

A/A-G/G 4873 42.34 0.2123 0   
0.04367 41570 

G/A 177 44.63 1.1298 2.289 0.0656 4.513 

log-Additive                 

0,1,2    2.295 0.14267 4.447 0.03668 41570 

n- sample size, se – standard error, dif- means difference, lower/upper 95% Confidence Interval for dif, AIC- Akaike information 

criterion 

The second SNP in the longevity analysis that was analyzed that passed the nominal p.value threshold 

for the dominant, overdominant and log-additive models was rs41282820. This polymorphism is 

located in the KIAA1755 gene on chromosome 20. We could not determine which model fitted our 

data better from the AIC values (the AIC values for all the models were the same Table 10), although 

there were only 3 subjects with the minor allele homozygote which may diminish the effect of this 

analysis, except with the dominant model, which was therefore the only reliable model in this case. 
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This SNP followed Hardy-Weinberg equilibrium (p=0.23). The mean value of age in the G/G (major 

allele homozygote) group was 42.34 y ( sd=14.82, n= 4870). The mean value of age in G/A-A/A 

(heterozygote, minor allele homozygote) group was 44.67 y (sd =14.84, n= 180). The difference in 

means was 2.33 years with 95% CI lower 0.126, upper 4.538. The mean age of subjects with at least 

one minor allele was slightly higher than for the group with major allele homozygote (Cohen’s d = 

0.157, very small effect size).  

 

Table 11. Detailed rs61942233 association analysis with patient's age for selected genetic models 

  n mean se dif lower upper p-value AIC 

Dominant   

C/C 4915 42.32 0.2115 0   
0.001231 41531 

T/C-T/T 131 46.56 1.2766 4.242 1.671 6.813 

Recessive                 

C/C-T/C 5045 42.42 0.2088 0   
0.210466 41540 

T/T 1 61 0 18.578 -10.495 47.651 

Overdominant                 

C/C-T/T 4916 42.32 0.2114 0   
0.001735 41532 

T/C 130 46.45 1.2815 4.127 1.546 6.708 

log-Additive                 

0,1,2    4.288 1.746 6.83 0.000951 41531 

n- sample size, se – standard error, dif- means difference, lower/upper 95% Confidence Interval for dif, AIC- Akaike information 

criterion 

 

The third SNP in the longevity analysis which was analyzed passed the nominal p.value threshold for 

almost all tested models (except recessive): rs61942233.  This polymorphism is located in the OAS3 

gene on chromosome 12. The best genetic model (based on AIC value) for this data was either 

dominant or log-additive Table 11. The same situation occurred as in the previous analysis i.e. there 

was a very small sample size in the minor allele homozygote group (with only 1 subject). This SNP 

followed Hardy-Weinberg equilibrium (p = 0.577). The mean value for age in the C/C (major allele 

homozygote) group was 42.32 y (sd =14.82, n= 4915). The mean value for age in T/C-T/T group was 

46.56 y (sd= 14.55, n =131. The mean age of subjects with at least one minor allele was slightly higher 

than the group’s with major allele homozygote (Cohen’s d = 0.28, small effect size). 
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Table 12. Detailed rs8192646 association analysis with patient's age for selected genetic models 

  n mean se dif lower upper p-value AIC 

Dominant   

C/C 4573 42.33 0.2186 0   
0.143899 41540 

T/C-T/T 473 43.37 0.7043 1.0471 -0.357 2.451 

Recessive                 

C/C-T/C 5032 42.39 0.2091 0   
0.00307 41533 

T/T 14 54.14 2.8243 11.7502 3.97533 19.525 

Overdominant                 

C/C-T/T 4587 42.36 0.2183 0   
0.347306 41541 

T/C 459 43.05 0.7155 0.6826 -0.7407 2.106 

log-Additive                 

0,1,2    1.3096 -0.0334 2.653 0.056134 41538 

n- sample size, se – standard error, dif- means difference, lower/upper 95% Confidence Interval for dif, AIC- Akaike information 

criterion 

 

The fourth SNP in the longevity analysis that passed the nominal p.value threshold for codominant and 

recessive models was rs8192646. This polymorphism is located in the TAAR2 gene on chromosome 6. 

Based on AIC the best genetic model for this analysis was the recessive model Table 12. This SNP 

followed Hardy-Weinberg equilibrium (p=0.447). The mean value of age in the T/T (minor allele 

homozygote) group was 54.14 y (sd= 10.18, n=14). The mean value of age in C/C+T/C group was 42.39 

y (sd= 14.82, n =5032. The mean age of subjects with 2 minor alleles was significantly higher than the 

second group’s (Cohen’s d= 0.94, large effect size). 
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Table 13. Detailed rs35898523 association analysis with patient's age for selected genetic models 

  n mean se dif lower upper p-value AIC 

Dominant                 

G/G 4474 42.39 0.2201 0   
0.6177 41565 

T/G-T/T 575 42.72 0.6526 0.328 -0.9599 1.616 

Recessive                 

G/G-T/G 5027 42.39 0.2091 0   
0.01772 41560 

T/T 22 49.91 3.0436 7.5142 1.3059 13.723 

Overdominant                 

G/G-T/T 4496 42.43 0.2197 0   
0.99386 41565 

T/G 553 42.43 0.6653 0.00514 -1.305 1.315 

log-Additive                 

0,1,2    0.58154 -0.6356 1.799 0.34909 41564 

n- sample size, se – standard error, dif- means difference, lower/upper 95% Confidence Interval for dif, AIC- Akaike information 

criterion 

The last SNP in the longevity analysis that passed the nominal p.value threshold for the recessive model 

was rs35898523. This polymorphism is located in the GBGT1 gene on chromosome 9. Based on AIC 

(the lowest AIC value), the recessive model was the best fitted model for this dataset Table 13. This 

SNP followed Hardy-Weinberg equilibrium (p=0.312). The mean value for age in the T/T (minor allele 

homozygote) group was 49.91 y (sd = 14.28, n =22), 22 subjects were in this group. The mean value of 

age in the G/G-T/G (major allele homozygote, heterozygote) group was 42.39 y (sd= 14.82, n =5027). 

The mean age of subjects with 2 minor alleles was higher than the second group’s (Cohen’s d= 0.51, 

medium effect size). 

The raw p.value data used to generate Figure 22  is available as the excel spreadsheet “YOB_ANALYSIS” 

on attached CD. 
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4.3 Association analysis – number of children (NCI) 

The association analysis with the number of children per individual (NCI) was conducted for two data 

sets: the whole group, characterized in section 4.1, and the subset of subjects above the age of 

reproductive activity. The criteria for selection of the second group were described in section 3.2.1 . 

4.3.1  Whole group – association with NCI 

 

Figure 23. Manhattan-type plot of the association p-values between selected SNPs with number of children per individual for 

different genetic models. The analysis presented above (Figure 23) shows that 3 SNPs passed the nominal (p <0.05) p.value 

threshold for either dominant or recessive genetic models (blue stripes).  2 SNPs passed the Bonferroni corrected (red stripes) 

p.value threshold.  Overall 6 SNPs were selected for further, more detailed analysis. A high-resolution graph is available as 

an electronic version on the attached cd (named Figure 23). 

 

 

The first RS from the NCI study (from the Manhattan plot in Figure 23) analyzed that passed the 

nominal p.value threshold for the reccesive model was rs1023840. This polymorphism is located in the 

MROH2B gene on chromosome 5. Based on AIC (the lowest AIC value), the recessive model was the 

best fitted model for this dataset Table 14. This SNP followed Hardy-Weinberg equilibrium (p = 0.92). 

The mean value of NCI in T/T (minor homozygote) group was 1.421 children (sd= 1.3, n= 197). The 

mean value of NCI in C/C-T/C (major homozygote, heterozygote) group was 1.59 children (sd = 1.52, n 

=4805). The mean value of number of children was slightly lower in the minor homozygote group than 

in second group (Cohen’s d= 0.12, very small effect size).  
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Table 14. Detailed rs1023840 association analysis with NCI for selected genetic models 

  n mean se dif lower upper p-value AIC 

Dominant                 

C/C 3218 1.59 0.0270 0   
0.1309 16824 

T/C-T/T 1784 1.571 0.0355 -0.0580 -0.1333 0.0172 

Recessive                 

C/C-T/C 4805 1.59 0.0221 0   
0.0081 16820 

T/T 197 1.421 0.0927 -0.2502 -0.4354 -0.0650 

Overdominant                 

C/C-T/T 3415 1.58 0.0260 0   
0.6540 16826 

T/C 1587 1.59 0.0382 -0.0177 -0.0952 0.0597 

log-Additive                 

0,1,2    -0.0717 -0.1356 -0.0078 0.0280 16822 

n- sample size, se – standard error, dif- means difference, lower/upper 95% Confidence Interval for dif, AIC- Akaike information 

criterion 

Table 15. Detailed rs146753414 association analysis with NCI for selected genetic models 

  n mean se dif lower upper p-value AIC 

Dominant                 

C/C 4872 1.573 0.0218 0   
0.0012 16813 

A/C-A/A 129 1.992 0.1372 0.3763 0.1492 0.6034 

Recessive                 

C/C-A/C 5000 1.583 0.0215 0   
0.0243 16819 

A/A 1 6 0.0000 2.9300 0.3809 5.4791 

Overdominant                 

C/C-A/A 4873 1.574 0.0218 0   
0.0022 16815 

A/C 128 1.961 0.1347 0.3557 0.1277 0.5836 

log-Additive                 

0,1,2    0.3904 0.1660 0.6149 0.0007 16812 

 

The second RS in the NCI study analyzed that passed the nominal p.value threshold for dominant 

genetic model was rs146753414. This SNP is located in KRT83 gene on chromosome 12. Based on AIC 

the dominant model was a better model than recessive Table 15. This SNP followed Hardy-Weinberg 

equilibrium (p=0.588). The mean value of NCI in the C/C (major homozygote) group was 1.573 children 

(sd= 1.51, n=4872). The mean value of NCI in the A/C-A/A (heterozygote, minor homozygote) group 
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was 1.992 children (sd= 1.56, n =129). The mean value of NCI in minor homozygote-heterozygote group 

was slightly higher (Cohen’s d =0.27, very small effect size). 

Table 16. Detailed rs35233100 association analysis with NCI for selected genetic models 

  n mean se dif lower upper p-value AIC 

Dominant                 

C/C 4435 1.569 0.0227 0   
0.0975 16824 

T/C-T/T 567 1.691 0.0663 0.0961 -0.0175 0.2097 

Recessive                 

C/C-T/C 4982 1.582 0.0215 0   
0.0217 16821 

T/T 20 1.85 0.4309 0.6692 0.0981 1.2403 

Overdominant                 

C/C-T/T 4455 1.571 0.0227 0   
0.2227 16825 

T/C 547 1.686 0.0670 0.0718 -0.0436 0.1873 

log-Additive                 

0,1,2    0.1104 0.0026 0.2182 0.0448 16823 

n- sample size, se – standard error, dif- means difference, lower/upper 95% Confidence Interval for dif, AIC- Akaike information 

criterion 

 

The third RS in the NCI study analyzed that passed the nominal p.value threshold for recessive model 

was rs35233100. This SNP is located in the MADD gene on chromosome 12. Based on AIC (the lowest 

AIC value), the recessive model was the best fitted model for this dataset Table 16. This SNP followed 

Hardy-Weinberg equilibrium (p=0.445). The mean value of NCI in T/T (minor homozygote) group was 

1.85 children (sd= 1.93, n=20). The mean  value of NCI in the C/C-T/C (major homozygote, 

heterozygote) group was 1.569 children (sd= 1.51, n = 4982). The mean value of number of children 

born was slightly higher in the minor allele homozygote group than in second group (Cohen’s d= 0.162, 

very small effect size).  
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Table 17. Detailed rs1861050 association analysis with NCI for selected genetic models 

  n mean se dif lower upper p-value AIC 

Dominant                 

C/C 1259 1.463 0.03964 0   
0.000356 12573 

T/C-T/T 2490 1.64 0.03136 0.1599 0.07221 0.2476 

Recessive                 

C/C-T/C 2485 1.564 0.02954 0   
0.051022 12582 

T/T 1264 1.612 0.04493 0.08734 -0.0003 0.175 

Overdominant                 

C/C-T/T 2523 1.538 0.03 0   
0.103985 12583 

T/C 1226 1.668 0.04373 0.07335 -0.0151 0.1618 

log-Additive                 

0,1,2    0.08199 0.03149 0.1325 0.001473 12575 

n- sample size, se – standard error, dif- means difference, lower/upper 95% Confidence Interval for dif, AIC- Akaike information 

criterion 

The fifth SNP from the NCI study (from the Manhattan plot in Figure 23) , that passed p.value after 

Bonferroni correction for dominant model, was rs1861050. This SNP is located in CC2D2A on 

chromosome 4. Based on AIC the dominant model was the best fitted model for this dataset Table 17. 

This SNP did not follow Hardy-Weinberg equilibrium (p < 0.05). The mean value of NCI in the C/C (major 

allele homozygote) group was 1.463 children- (sd= 1.403, n= 1259. The mean value of NCI in the T/C-

T/T (heterozygote, minor allele homozygote)  group was 1.64 children (sd= 1.56, n =2490).  The mean 

value of NCI in the T/C – T/T group was slightly higher than in major allele homozygote group (Cohen’s 

d =0.12, very small effect size).  

 

 

 

 

 

 



63 
 

Table 18. Detailed rs4788587 association analysis with NCI for selected genetic models 

  n mean se dif lower upper p-value AIC 

Dominant                 

G/G 3383 1.646 0.02664 0   
7.72E-05 16785 

A/G-A/A 1610 1.452 0.03623 -0.1556 -0.2327 -0.0785 

Recessive                 

G/G-A/G 4829 1.586 0.02196 0   
0.577698 16800 

A/A 164 1.53 0.10887 -0.0575 -0.2599 0.1449 

Overdominant                 

G/G-A/A 3547 1.641 0.0259 0   
0.000116 16785 

A/G 1446 1.443 0.03841 -0.1564 -0.2358 -0.0769 

log-Additive                 

0,1,2    -0.1215 -0.1879 -0.0551 0.000337 16787 

n- sample size, se – standard error, dif- means difference, lower/upper 95% Confidence Interval for dif, AIC- Akaike information 

criterion 

 

The last analyzed SNP from the NCI study, that passed p.value Bonferroni correction threshold for 

dominant model, was rs4788587. This SNP is located in PKD1L3 gene on chromosome 16. Based on AIC 

the dominant model was the best fitted model for this dataset Table 18. This SNP followed Hardy-

Weinberg equilibrium (p= 0.45). The mean value of NCI in the G/G (major allele homozygote) group 

was 1.646 children (sd=1.54, n =3383). The mean value of NCI in the A/G-A/A (heterozygote, minor 

allele homozygote) group was 1.452 children (sd= 1.45, n =1610). The mean value of NCI was slightly 

lower in A/G-A/A group than in major allele homozygote group (Cohen’s d=0.13, very small effect size). 

All of the raw p.value data used to generate Figure 23 is available as the excel spreadsheet 

“NCI_ANALYSIS” an  on CD. 
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4.3.2  Subset characteristics 

 

Table 19. Summary of the subset 

 

 

 

 

 

 

 

 

 

 N- sample size; for qualitative variable n (%) of the group is presented, for quantitative mean and (standard 

deviation). 

 

The subset analyzed with NCI consisted of 1722 subjects. Table 19 shows that 1132 of them were 

female (65.7%) and 590 were male (34.3%). The average age was 59.1 y (sd= 7.89) years, and mean 

value of NCI was 2.41 children (sd= 1.52).  

 

 

 

 

 

 

 

  [ALL]N=1722 N 

SEX: 
 

1722 

Female 1132 (65.7%) 
 

Male 590 (34.3%) 
 

Age 59.1 (7.89) 1722 

Number of children born 2.41 (1.52) 1722 
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4.3.3  Subset –  NCI analysis 

 

 

Figure 24. Manhattan-type plot of association p-values between selected PTCs with numbers of children per individual for 

different genetic models – subset. The analysis presented above shows that 6 SNPs passed the nominal p.value threshold 

(p<0.05) for either the recessive or dominant model (blue stripes). Purple stripes represent RS association p.values  that 

passed Bonferroni correction in the previous analysis. A more detailed analysis for these 8 RSs was conducted.  A high-

resolution graph is available as an electronic version on the attached cd (named Figure 24).  

Table 20. Detailed rs10981589 association analysis with NCI subset for selected genetic models 

 n mean se dif lower upper p-value AIC 

Dominant         

G/G 1564 2.393 0.0383 0   0.1699 6293 

A/G-A/A 143 2.573 0.1402 0.1832 -0.0783 0.4447   

Recessive         

G/G-A/G 1702 2.402 0.0367 0   0.0019 6285 

A/A 5 4.6 1.6912 2.1250 0.7879 3.4621   

Overdominant         

G/G-A/A 1569 2.4 0.0386 0   0.4360 6294 

A/G 138 2.5 0.1302 0.1057 -0.1602 0.3715   

log-Additive         

0,1,2    0.2383 -0.0100 0.4866 0.0601 6291 

The first RS from the NCI subset study (from the Manhattan plot in Figure 24) analyzed that passed the 

nominal p.value threshold for the recessive model was rs10981589. Based on AIC this is the best fitted 

model for this dataset Table 20. This SNP is located in the ZNF883 gene on chromosome 9. This SNP 

followed Hardy-Weinberg equilibrium (p=0.142). The mean value of NCI in the A/A (minor allele 
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homozygote) group was 4.6 children (sd = 3.54, n =5). The mean value of NCI in the G/G-A/G (major 

allele homozygote, heterozygote) group was 2.4 children (sd = 1.51, n =1702). The mean value of NCI 

was significantly higher in the A/A (minor allele homozygote) group than in the G/G-A/G group 

(Cohen’s d = 0.8, large effect size).  

 

Table 21. Detailed rs12925771 association analysis with NCI subset for selected genetic models 

  n mean se dif lower upper p-value AIC 

Dominant                 

G/G 889 2.314 0.0475 0   
0.0100 6282 

A/G-A/A 816 2.512 0.0573 0.1907 0.0457 0.3356 

Recessive                 

G/G-A/G 1573 2.412 0.0389 0   
0.8020 6289 

A/A 132 2.371 0.1170 -0.0347 -0.3059 0.2365 

Overdominant                 

G/G-A/A 1021 2.321 0.0440 0   
0.0057 6281 

A/G 684 2.539 0.0645 0.2086 0.0608 0.3563 

log-Additive                 

0,1,2    0.1121 -0.0022 0.2264 0.0547 6285 

n- sample size, se – standard error, dif- means difference, lower/upper 95% Confidence Interval for dif, AIC- Akaike information 

criterion 

 

The second RS in the NCI subset study that passed the nominal p.value threshold for dominant and 

overdominant models was rs12925771. Based on AIC values the overdominant model was the best 

fitted model for this dataset Table 21. This SNP is located in PKD1L2 gene on chromosome 16. This SNP 

followed Hardy-Weinberg equilibrium (p = 0.95). The mean value of NCI in the A/G (heterozygote) 

group was 2.539 children (sd= 1.68, n =684). The mean value of NCI in the A/A-G/G (minor allele 

homozygote, major allele homozygote) group was 2.321 children (sd=1.45, n =1021). The mean value 

of NCI in A/G was slightly higher than in the A/A-G/G group (Cohen’s d = 0.139, very small effect size).  
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Table 22. Detailed rs1459101 association analysis with NCI subset for selected genetic models 

  n mean se dif lower upper p-value AIC 

Dominant                 

C/C 959 2.376 0.0488 0   
0.4030 6294 

T/C-T/T 748 2.449 0.0566 0.0624 -0.0838 0.2085 

Recessive                 

C/C-T/C 1620 2.382 0.0375 0   
0.0016 6284 

T/T 87 2.897 0.1900 0.5304 0.2018 0.8590 

Overdominant                 

C/C-T/T 1046 2.42 0.0477 0   
0.5666 6294 

T/C 661 2.39 0.0587 -0.0435 -0.1925 0.1054 

log-Additive                 

0,1,2    0.1165 -0.0056 0.2386 0.0616 6291 

n- sample size, se – standard error, dif- means difference, lower/upper 95% Confidence Interval for dif, AIC- Akaike information 

criterion 

 

 

The third RS in the NCI subset study analyzed that passed the nominal p.value threshold for recessive 

model was rs1459101. Based on AIC values this was the best fitted model for this dataset Table 22. 

This SNP is located in OR4C16 gene on chromosome 11. This SNP followed Hardy-Wenberg equilibrium 

(p= 0.06). The mean value of NCI in the T/T (minor allele homozygote) group was 2.897 children 

(sd=1.75, n =87). The mean value of NCI in the C/C-T/C (major allele homozygote, heterozygote) group 

was 2.382 children (sd= 1.51, n =1620). The mean value of NCI was slightly higher in the T/T group than 

in the C/C-T/C group (Cohen’s d = 0.31 , small effect size).  
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Table 23. Detailed rs146753414 association analysis with NCI subset for selected genetic models 

  n mean se dif lower upper p-value AIC 

Dominant                 

C/C 1661 2.392 0.0375 0   
0.0109 6288 

A/C-A/A 46 3 0.2062 0.5808 0.1341 1.0276 

Recessive                 

C/C-A/C 1706 2.406 0.0370 0   
0.0249 6289 

A/A 1 6 0.0000 3.4285 0.4353 6.4216 

Overdominant                 

C/C-A/A 1662 2.394 0.0376 0   
0.0255 6290 

A/C 45 2.933 0.1995 0.5150 0.0634 0.9665 

log-Additive                 

0,1,2    0.6171 0.1844 1.0498 0.0052 6287 

 n- sample size, se – standard error, dif- means difference, lower/upper 95% Confidence Interval for dif, AIC- Akaike 

information criterion 

 

 

The fourth RS in the NCI subset study analyzed that passed the nominal p.value threshold for the 

dominant model was rs146753414. Only 1 person had the minor allele homozygote variant, and 

therefore the dominant model will be described  

Table 23. This SNP is located in KRT83 gene on chromosome 12. This SNP followed Hardy-Weinberg 

equilibrium (p= 0.28). The mean value of NCI in the C/C (major allele homozygote) group was 2.39 

children (sd=1.52, n =1661). The mean value of NCI in the A/C-A/A (heterozygote, minor allele 

homozygote) group was 3 children (sd=1.36, n = 46). The mean value of NCI was slightly higher in the 

A/C-A/A group than in the major allele homozygote group (Cohen’s d=0.42 ,small effect size).  
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Table 24. Detailed rs16910526 association analysis with NCI subset for selected genetic models 

  n mean se dif lower upper p-value AIC 

Dominant                 

A/A 1460 2.398 0.0404 0   
0.5881 6291 

C/A-C/C 246 2.463 0.0912 0.0570 -0.1492 0.2632 

Recessive                 

A/A-C/A 1702 2.402 0.0369 0   
0.0052 6283 

C/C 4 4.5 1.3229 2.1321 0.6377 3.6264 

Overdominant                 

A/A-C/C 1464 2.404 0.0405 0   
0.8741 6291 

C/A 242 2.43 0.0891 0.0168 -0.1909 0.2245 

log-Additive                 

0,1,2    0.0927 -0.1084 0.2938 0.3666 6290 

n- sample size, se – standard error, dif- means difference, lower/upper 95% Confidence Interval for dif, AIC- Akaike information 

criterion 

 

 

 

The fifth RS in the NCI subset study analyzed that passed the nominal p.value threshold for the 

recessive model was rs16910526. Based on AIC values the recessive model was the best fitted (from 

statistically significant models) model for this dataset Table 24. This SNP is located in CLEC7A gene on 

chromosome 12. This SNP followed Hardy-Weinberg equilibrium (p=0.07). The mean value of NCI in 

the C/C (minor allele homozygote) group was 4.5 children (sd= 2.65, n =4). The mean value of NCI in 

the A/A-C/A (major allele homozygote, heterozygote) group was 2.4 children (sd=1.52, n =1702). The 

mean value of NCI was significantly higher in the minor allele homozygote group than in the major 

allele homozygote + heterozygote group (Cohen’s d = 0.97, large effect size). 
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Table 25. Detailed rs7447815 association analysis with NCI subset for selected genetic models 

  n mean se dif lower upper p-value AIC 

Dominant                 

C/C 693 2.505 0.0612 0   
0.0285 6290 

G/C-G/G 1014 2.342 0.0460 -0.1648 -0.3120 -0.0175 

Recessive                 

C/C-G/C 1486 2.445 0.0407 0   
0.0122 6288 

G/G 221 2.163 0.0809 -0.2755 -0.4908 -0.0602 

Overdominant                 

C/C-G/G 914 2.422 0.0506 0   
0.6375 6294 

G/C 793 2.392 0.0543 -0.0349 -0.1801 0.1103 

n- sample size, se – standard error, dif- means difference, lower/upper 95% Confidence Interval for dif, AIC- Akaike information  

log-Additive                 

0,1,2    -0.1542 -0.2609 -0.0476 0.0046 6286 

criterion 

The sixth RS in the NCI subset study analyzed that passed the nominal p.value threshold for the 

recessive model was rs7447815. The best fitted model, based on AIC values, was the recessive model 

Table 25. This SNP is located in SLC6A18 gene. This SNP followed Hardy-Weinberf equilibrium (p= 0.87) 

The mean value of NCI in the G/G ( minor allele homozygote) group was 2.163 children (sd= 1.2, n 

=221). The mean value of NCI in the C/C-G/C (major allele homozygote, heterozygote) group was 2.445 

children (sd=1.563, n =1486). The mean value of NCI was slightly lower in the minor homozygote group 

than in the major allele homozygote + heterozygote group (Cohen’s d= 0.2, very small effect size). 
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Table 26. Detailed rs1861050 assocaction analysis with NCI subset for selected genetic models 

  n mean se dif lower upper p-value AIC 

Dominant                 

C/C 420 2.236 0.0657 0   
0.0035 4631 

T/C-T/T 842 2.495 0.0548 0.2647 0.0876 0.4418 

Recessive                 

C/C-T/C 856 2.343 0.0496 0   
0.0257 4634 

T/T 406 2.547 0.0816 0.2039 0.0250 0.3828 

Overdominant                 

C/C-T/T 826 2.389 0.0524 0   
0.4822 4639 

T/C 436 2.447 0.0737 0.0633 -0.1131 0.2397 

log-Additive                 

0,1,2    0.1576 0.0545 0.2607 0.0028 4631 

 

n- sample size, se – standard error, dif- means difference, lower/upper 95% Confidence Interval for dif, AIC- Akaike information 

criterion 

 

   

The first RS from the previous NCI study (from the Manhattan plot in Figure 23) that passed Bonferroni-

corrected p.value threshold in the previous analysis was rs1861050. In the subset analysis the 

dominant model, with the lowest AIC score, passed the nominal p.value threshold Table 26. This SNP 

in the subset analysis didn’t follow Hardy-Weinberg equilibrium (p < 0.05). The mean value of NCI in 

the C/C (major allele homozygote) group was 2.236 children (sd=1.34, n = 420). The mean value of NCI 

in the T/T-C/T (minor allele homozygote, heterozygote) group was 2.49 children (sd=1.57, n =842). The 

mean value of NCI was slightly higher in the T/T-C/T group than in the major allele homozygote group 

(Cohen’s d = 0.178, very small effect size). 
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Table 27. Detailed rs4788587 association analysis with NCI subset for selected genetic models 

  n mean se dif lower upper p-value AIC 

Dominant                 

G/G 1163 2.447 0.0447 0   
0.1800 6280 

A/G-A/A 540 2.331 0.0661 -0.1067 -0.2626 0.0492 

Recessive                 

G/G-A/G 1647 2.419 0.0380 0   
0.2332 6280 

A/A 56 2.161 0.1524 -0.2476 -0.6546 0.1593 

Overdominant                 

G/G-A/A 1219 2.434 0.0433 0   
0.3619 6281 

A/G 484 2.351 0.0715 -0.0749 -0.2357 0.0860 

log-Additive                 

0,1,2    -0.1057 -0.2397 0.0283 0.1223 6280 

n- sample size, se – standard error, dif- means difference, lower/upper 95% Confidence Interval for dif, AIC- Akaike information 

criterion 

The second RS that passed the Bonferroni-corrected p.value threshold in the previous (whole dataset 

with adjustments) analysis was rs4788587. In the subset analysis there were no statistically significant 

associations between selected RS and number of children born for any genetic models analyzed Table 

27.  

All of the raw p.value data used to generate Figure 234 is available as the excel spreadsheet 

“NCI_ANALYSIS_SUB” on CD. 
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4.4 Association analysis- Body Mass Index as a continuous 

variable 

 

Figure 25. Manhattan-type plot of association p-values between selected PTCs with body mass index for different genetic 

models 

 

The analysis presented in Figure 25 shows that, for the continuous BMI study,  4 SNPs passed the 

nominal p.value threshold (p<0.05) for either recessive or dominant models (blue stripes). A more 

detailed analysis for these 4 RSs was conducted. A high-resolution graph is available as an electronic 

version on the attached cd (named Figure 25). 
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Table 28. Detailed rs183603441 association analysis with BMI for selected genetic models 

  n mean se dif lower upper p-value AIC 

Dominant   

T/T 4931 25.35 0.0648 0   
0.0153 28870 

A/T-A/A 114 24.65 0.4261 -0.9724 -1.7580 -0.1871 

Recessive                 

T/T-A/T 5044 25.33 0.0641 0   
0.9901 28876 

A/A 1 27.72 0.0000 0.0526 -8.2420 8.3467 

Overdominant                 

T/T-A/A 4932 25.35 0.0648 0   
0.0148 28870 

A/T 113 24.62 0.4290 -0.9813 -1.7700 -0.1926 

log-Additive                 

0,1,2    -0.9469 -1.7220 -0.1718 0.0167 28870 

n- sample size, se – standard error, dif- means difference, lower/upper 95% Confidence Interval for dif, AIC- Akaike information 

criterion 

The first RS in the continuous BMI study that passed the nominal p.value threshold for the dominant 

model was rs183603441. Based on AIC values the dominant model was one of the best models for this 

dataset Table 28. This SNP is located in HYKK gene on chromosome 15. This SNP followed Hardy-

Weinberg equilibrium (p=0.49). The mean value of BMI in the T/T (major allele homozygote) group was 

25.35 kg/m2 (sd=4.55, n =4931). The mean value of BMI in the A/T-A/A (heterozygote, minor allele 

homozygote) group was 24.65 kg/m2 (sd=4.47, n=114).  The mean value of BMI was slightly lower in 

the heterozygote + minor allele group than in the major allele homozygote (Cohen’s d = 0.155, very 

small effect size). 
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Table 29. Detailed rs3784589 association analysis with BMI for selected genetic models 

  n mean se dif lower upper p-value AIC 

Dominant   

C/C 4233 25.27 0.0694 0   
0.0151 28896 

A/C-A/A 817 25.71 0.1640 0.3926 0.0760 0.7092 

Recessive                 

C/C-A/C 5021 25.34 0.0643 0   
0.7297 28902 

A/A 29 24.68 0.6491 -0.2722 -1.8161 1.2718 

Overdominant                 

C/C-A/A 4262 25.26 0.0691 0   
0.0112 28895 

A/C 788 25.75 0.1683 0.4161 0.0949 0.7374 

log-Additive                 

0,1,2    0.3424 0.0423 0.6425 0.0254 28897 

n- sample size, se – standard error, dif- means difference, lower/upper 95% Confidence Interval for dif, AIC- Akaike information 

criterion 

 

The second RS in the continuous BMI study analyzed that passed the nominal p.value threshold for 

overdominant, log-additive and dominant models was rs3784589. Based on AIC values, the 

overdominant model was the best fitted model for this dataset  

Table 29. This SNP is located in TRPM1 gene on chromosome 15. This SNP followed Hardy-Weinberg 

equilibrium (p=0.23). The mean value of BMI in the A/C (heterozygote) group was 25.75 kg/m2 (sd = 

4.74, n=788). The mean value of BMI for the C/C-A/A (major allele homozygote, minor allele 

homozygote) group was 25.26 kg/m2 (sd=4.51, n=4262). The mean value of BMI was slightly higher in 

the A/C (heterozygote) group than in the C/C-A/A group (Cohen’s d = 0.106, very small effect size). 
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Table 30.Detailed rs41281112 association analysis with BMI for selected genetic models 

  n mean se dif lower upper p-value AIC 

Dominant   

C/C 4874 25.31 0.0651 0   
0.0153 28857 

T/C-T/T 169 26.02 0.3551 0.8022 0.1539 1.4510 

Recessive                 

C/C-T/C 5041 25.34 0.0641 0   
0.6476 28863 

T/T 2 26.49 0.6670 1.3677 -4.4968 7.2320 

Overdominant                 

C/C-T/T 4876 25.31 0.0651 0   
0.0170 28857 

T/C 167 26.02 0.3593 0.7946 0.1425 1.4470 

log-Additive                 

0,1,2    0.7906 0.1536 1.4280 0.0150 28857 

n- sample size, se – standard error, dif- means difference, lower/upper 95% Confidence Interval for dif, AIC- Akaike information 

criterion 

The third RS in the continuous BMI study analyzed that passed the nominal p.value threshold for 

dominant and overdominant models was rs41281112. The best genetic model couldn’t be determined 

with AIC values and therefore the dominant model will be described Table 30. This SNP is located in 

CLYBL gene on chromosome 13. This SNP followed Hardy-Weinberg equilibrium. The mean value of 

BMI in the C/C (major allele homozygote) group was 25.31 kg/m2 (sd = 4.54, n =4874). The mean value 

of BMI in the T/C-T/T ( heterozygote, minor allele homozygote) group was 26.02 kg/m2 (sd=4.6, n 

=169). The mean value of BMI was slightly higher in the group with at least one minor allele (Cohen’s 

d = 0.15, very small effect size). 
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Table 31. Detailed rs67047829 association analysis with BMI for selected genetic models 

  n mean se dif lower upper p-value AIC 

Dominant   

G/G 4159 25.4 0.0710 0   
0.0376 28898 

A/G-A/A 891 25.03 0.1473 -0.3246 -0.6305 -0.0187 

Recessive                 

G/G-A/G 4994 25.36 0.0644 0   
0.0009 28891 

A/A 56 23.35 0.4866 -1.8807 -2.9935 -0.7679 

Overdominant                 

G/G-A/A 4215 25.38 0.0704 0   
0.2300 28900 

A/G 835 25.14 0.1530 -0.1923 -0.5063 0.1217 

log-Additive                 

0,1,2    -0.3884 -0.6674 -0.1094 0.0064 28894 

n- sample size, se – standard error, dif- means difference, lower/upper 95% Confidence Interval for dif, AIC- Akaike information 

criterion 

 

The last RS in the continuous BMI study analyzed that passed the nominal p.value threshold for 

recessive and additive model was rs67047829. Based on AIC values, the recessive model was the best 

model for this dataset Table 31. This SNP is located in ERV3-1 gene on chromosome 7. This SNP 

followed Hardy-Weinberg equilibrium (p=0.068). The mean value of BMI in the A/A (minor allele 

homozygote) group was 23.35 kg/m2 (sd=3.64; n = 56). The mean value of BMI in the G/G-A/G group 

was 25.36 kg/m2 (sd=4.55, n=4994).  The mean value of BMI was slightly lower in the minor allele 

homozygote group (Cohen’s d 0.48, small effect size) 

 

All of the raw p.value data used to generate Figure 25 is available as the excel spreadsheet 

“BMI_ANALYSIS”  on CD. 
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4.5 Post-hoc association analysis – BMI qualitative variable (BMI 

group) 

 

Table 32. Association analysis between BMI group and PTC SNPs.  Post-hoc analysis compares the normal weight group with 
the obesity group 

RS name Genotype 
under
weight 

normal 
weight 

overw
eight 

obesity Statistics 
Post Hoc 
analysis 

Quantitative 
analysis 

rs114429815 

T/T 67 611 470 166 
Fisher 
test  

Dominant 
model  

p= 0.0497 

OR= 1.17,  
95% CI:[ 0.95, 

1.44], p = 
0.148 

p.value 
dominant 
model = 

0.95 
C/T - C/C 91 1230 826 391 

rs3732781 

A/A 87 1289 797 366 
Fisher 
test  

Dominant 
model 

p = 
0.0097 

OR= 1.12,  
95% CI:[ 0.95, 

1.32], p = 
0.18 

p.value 
dominant 
model = 

0.20 
C/A-C/C 98 1182 898 376 

rs7447815 

C/C 84 1029 644 319 
Fisher 
test  

Dominant 
model 

p = 
0.0226 

OR= 0.94,  
95% CI:[ 0.79, 

1.12], p = 
0.18 

p.value 
dominant 
model = 

0.97 
G/C-G/G 101 1442 1052 422 

rs6907580 

G/G 167 2216 1532 686 
Cochran 
Armitage 
Trend test 
Dominant 

model 
p=0.0489 

OR= 0.71,  
95% CI:[ 0.51, 

0.96], p = 
0.024 

p.value 
dominant 
model = 

0.10 
A/G-A/A 18 256 164 56 

rs67047829 

G/G-A/G 181 2436 1682 740 
Fisher 
test 

Recessive 
model 

p=0.0072 
Cochran 
Armitage 
Trend test 
Recessive 

model 
p=0.0011 

OR= 0.183,  
95% CI:[ 

0.021, 0.713], 
p = 0.0059 

p.value 
recessive 
model = 
0.00093 

A/A 4 36 14 2 

rs138377917 

G/G 166 2228 1529 666 
Fisher 
test  

Dominant 
model 

p = 
0.00418 

OR= 1.096,  
95% CI:[ 0.61, 

1.88], p = 
0.78 

p.value 
dominant 
model = 

0.97 
A/G-A/A 13 58 33 19 
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rs35898523 

G/G-T/G 185 2464 1685 737 
Cochran 
Armitage 
Trend test 
Recessive 

model 
p=0.0269 

OR= 2.786,  
95% CI:[ 0.67, 

10.99], p = 
0.141 

p.value 
recessive 
model = 

0.35 
T/T 0 6 11 5 

rs9886752 

G/G 150 1927 1320 544 
Fisher 
test 

Dominant 
model 

p=0.0284 
Cochran 
Armitage 
Trend test 
Dominant 

model 
p=0.0112 

OR= 1.29,  
95% CI:[ 1.06, 

1.565], p = 
0.008 

p.value 
dominant 
model = 

0.82 
A/G-A/A 35 543 374 198 

rs35233100 

C/C-T/C 184 2457 1695 739 
Fisher 
test  

Dominant 
model  

p= 0.0178 

OR= 0.66,  
95% CI:[ 0.12, 

2.36], p = 
0.78 

p.value 
dominant 
model = 

0.085 
T/T 1 15 1 3 

rs1790218 

A/A-G/A 137 1932 1380 567 
Fisher 
test  

Recessive 
model  

p= 0.0072 

OR= 1.19,  
95% CI:[ 0.95, 

1.48], p = 
0.127 

p.value 
recessive 
model = 

0.68 
G/G 43 396 251 138 

rs16910526 

A/A-C/A 181 2462 1690 739 
Fisher 
test  

Recessive 
model  

p= 0.024 

OR= 0.99,  
95% CI:[ 0.17, 
3.895], p = 1 

p.value 
recessive 
model = 

0.09 
C/C 4 10 5 3 

rs71377306 

C/C-T/C 183 2459 1689 733 
Cochran 
Armitage 
Trend test 
Recessive 

model 
p=0.0472 

OR= 3.35,  
95% CI:[ 0.77, 

14.61], p = 
0.057 

p.value 
recessive 
model = 

0.19 
T/T 0 5 4 5 

rs118004742 

T/T-G/T 183 2455 1691 741 
Cochran 
Armitage 
Trend test 
Recessive 

model 
p=0.0439 

OR= 0,  95% 
CI:[ 0, 2.3], p 

= 0.36 

p.value 
recessive 
model = 

0.18 
G/G 2 7 4 0 

rs61737751 

C/C 175 2284 1540 674 
Cochran 
Armitage 
Trend test 
Dominant 

model 
p=0.0267 

OR= 1.22,  
95% CI:[ 0.90, 

1.65], p = 
0.189 

p.value 
recessive 
model = 

0.20 
T/C-T/T 10 188 156 68 
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The study analyzed 141 SNPs for possible association with BMI and conducted both qualitative and 

quantitative analyses. The provided table summarizes the results of the qualitative analysis, which 

includes Fisher tests and Cochran-Armitage trend tests for recessive and dominant models, as well as 

post-hoc analysis comparing the normal weight group to the obesity group in order to assess the risk 

of obesity. Table 33 represents only the statistically significant results. 

Based on Table 33, the SNP rs114429815 showed a statistically significant association with BMI under 

a dominant model (p=0.0497), but the post hoc analysis did not show a significant difference between 

normal weight and obesity groups. Similarly, the SNPs rs3732781, rs7447815, rs138377917, 

rs35233100 showed a statistically significant association with BMI under a dominant model, and SNPs 

rs61737751, rs35898523, rs1790218, rs16910526, rs71377306, rs118004742, showed a statistically 

significant association with BMI under a recessive model, but the post hoc analysis did not reveal a 

significant difference between normal weight and obesity groups. 

In contrast, the SNP rs6907580 showed a statistically significant association with BMI under a dominant 

model (p=0.0489), and a significant difference between normal weight and obesity groups in the post-

hoc analysis (p=0.024), suggesting that this SNP may be a risk factor for obesity. Similarly for SNPs 

rs9886752 for the dominant model and rs67047829 for the recessive model. The last SNP also showed 

significant association analysis results for the continuous variable (p= 0.00093). 

 

Overall, the table suggests that some SNPs may be associated with BMI and potentially play a role in 

obesity risk, particularly rs67047829 in the ERV3-1 gene. 

All of the raw p.value data used to generate Table 33 is available as the excel spreadsheet 

“BMI_Qualitative_ANALYSIS”   on CD. 
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5. Discussion 

Recent advances in genetics have allowed for a deeper understanding of how our DNA affects various 

aspects of our health and well-being. One such area of interest is the association between specific 

genetic mutations and various health outcomes. 

This present study in this thesis investigated the association between nonsense mutations and three 

key health outcomes: age (longevity), number of children born (fertility), and BMI (the risk of obesity). 

By analyzing a large dataset of genetic information and health outcomes, this might provide a better 

understanding of how nonsense mutations may impact these important health metrics. 

The findings from this study could have important implications for both clinical and public health 

practice. By identifying specific genetic mutations that are associated with improved health outcomes, 

it might be possible to develop more personalized approaches to disease prevention and treatment. 

Additionally, a better understanding of the genetic factors that contribute to longevity, fertility, and 

obesity risk could lead to the development of more effective interventions and strategies to improve 

overall health and well-being. 
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5.1 Longevity 

The first analyzed phenotype was longevity. According to a study published in the journal Nature 

Genetics, genetics play a significant role in determining human lifespan. The study identified several 

genes associated with longevity, including those involved in DNA repair, immune response, and cell 

signaling pathways. However, environmental and lifestyle factors can also affect the expression of 

these genes and thus influence lifespan [58]. Environmental factors such as exposure to pollutants, 

toxins, and radiation can also impact human longevity. A study published in the journal Aging Cell found 

that exposure to air pollution, specifically fine particulate matter, was associated with shorter 

telomere length, a marker of cellular aging, in older adults [59]. Other environmental factors that can 

affect lifespan include access to healthcare, nutrition, and social support. Lifestyle factors, such as diet, 

exercise, and smoking, also have a significant impact on human longevity. A study published in the 

journal Circulation found that maintaining a healthy lifestyle, including a healthy diet, regular exercise, 

not smoking, and moderate alcohol consumption, was associated with an increased lifespan of up to 

7 years [60]. Overall, human longevity is a complex phenomenon influenced by a combination of 

genetic, environmental, and lifestyle factors.  

This shows the first limitation of the present study, concerning the question of whether the longevity 

phenotype can be analyzed by association with the patient’s age alone. Age analysis without proper 

adjustments can only unequivocally demonstrate large genotype effects. Nevertheless, statistically 

significant results for smaller effects might potentially form the basis of a new study, which should 

include additional factors affecting longevity. Some studies have suggested that an association analysis 

with longevity should be performed between two groups: supercentenarians and a healthy, younger 

control group [61,62]. The original idea for the main purpose of producing the populous database was 

to study the obesity phenotype [36], and in this case therefore it wasn’t possible to create a proper 

supercentenarian group, which can be considered as a limitation of this study. 

Even so, pretermination codons in the following genes might give some insight into longevity, as long 

as the results are treated with caution. 
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5.1.1  The SULT1C3 gene 

 

The SULT1C3 gene encodes a member of the sulfotransferase family of enzymes, which catalyzes the 

transfer of a sulfate group from a donor molecule to a variety of acceptor molecules, including drugs, 

hormones, and neurotransmitters [63–65]. The physiological roles of SULT1C enzymes have not yet 

been fully elucidated, despite recent research showing that SULT1C2 and SULT1C4 are capable of 

catalyzing the sulphation of procarcinogenic hydroxyarylamines: N-hydroxy-2-acetylaminofluorene, 

resulting in the activation of their carcinogenic activity [66,67]. Furthermore, despite the fact that 

SULT1C2 and SULT1C4 have been partially cloned, produced, and described [67,68], the molecular 

identification of SULT1C3 is still unknown. It has been found that members of the SULT1C subfamily 

are more strongly expressed in fetal tissues than in adult tissues [69]. Freimuth et al(2004)'s 

computational analysis of the human genome was the first to predict the existence of SULT1C3 in the 

human genome. The potential for alternative splicing in this location was highlighted by these 

researchers when they observed what appeared to be a duplication of two exons, which they termed 

exons 7 and 8 (the first designated exon in this work was exon 2) in the order exon 7a, exon 8a, exon 

7b, and exon 8b. Theoretically, SULT1C3 pre-mRNA might be alternatively spliced to produce four 

transcripts with exons 7a/8a, 7a/8b, 7b/8a, or 7b/8b. These transcripts could then be translated into 

the appropriate proteins, known as SULT1C3 isoforms a, b, c, and d, respectively [70]. Another study 

indicated that SULT1C3 is expressed in intestinal tissues and cells [71]. Enzymatic analysis showed that 

SULT1C3d was able to sulphate a variety of substances, including bile acids, thyroid hormones, chloro 

phenols, and hydroxypyrenes, but SULT1C3a only showed mild sulphating activity toward chloro 

phenols[72]. 

The SNP rs112050262 acts as a pretermination codon in the SULT1C3 gene and potentially reduces the 

length of the expressed protein from one of the transcripts by 88.2% from 305 to 36 amino acids. 

 According to the present study, one of the statistically significant PTCs (rs112050262) for the recessive 

model was found in this gene. However, 24.7% of patients had missing genotype data for this PTC. The 

patients with the minor allele homozygote had a slightly higher mean age value. Nevertheless, due to 

the high amount of missing genotype data, the ambiguous protein function, and the low effect size, 

this PTC is unlikely to have any clinical significance on human longevity. It is worth noting that missing 

genotype data can significantly impact the accuracy and reliability of genetic association studies. 

Therefore, the high amount of missing data for this PTC limits the study's ability to draw meaningful 

conclusions about its association with longevity. Furthermore, the fact that the protein function of the 

gene is ambiguous adds to the uncertainty surrounding the clinical significance of this PTC. Without a 
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clear understanding of how the gene and its associated PTC influence the aging process, it is difficult 

to draw any conclusions about their potential clinical relevance. Finally, the study's finding of a very 

low effect size for this PTC further diminishes its clinical significance. While statistically significant, the 

small effect size suggests that this PTC is unlikely to have a significant impact on human longevity. 

5.1.2  The KIAA1755 gene 

By using cDNA sequencing, the Kazusa project discovered KIAA genes. The HUGE (Human Unidentified 

Gene-Encoded large protein database) database contains the described sequences of human large 

cDNAs longer than 4 kb that promote the production of huge proteins (>50 kDa) [73,74].  The PTC 

rs1205434 in the KIAA1755 gene was previously identified to be associated with the incidence of breast 

cancer in the Chinese population [75], yet the full functionality of the protein coded by this gene hasn’t 

been described in the literature.  

The SNP rs41282820 acts as a pretermination codon in the KIAA1755 gene and potentially reduces the 

length of the expressed protein by 57.5 % from 1201 to 510 amino acids. 

 The PTC rs41282820 gave a statistically significant model in the present study. There were no missing 

genotype data of this RS.   Given the limited sample size and ambiguous protein function of the 

KIAA1755 gene, it is difficult to draw strong conclusions about the potential association between the 

rs41282820 PTC and longevity. While this PTC did pass the nominal p-value threshold for several 

models, including dominant and overdominant, the AIC values for all models were the same, indicating 

that it is difficult to determine which model fits the data best. Additionally, the effect size of the PTC 

was very small, with a Cohen's d of 0.157. These factors, combined with the small number of subjects 

with minor allele homozygosity, suggest that this PTC may not have a significant impact on human 

longevity. Therefore, while it is possible that there may be some association between this PTC and 

longevity, the current evidence suggests that the association is likely weak at best, and may not be 

clinically significant. 

 

5.1.3  The OAS3 gene 

OAS3 dsRNA-activated antiviral enzyme induced by interferon that is essential for cellular innate 

immunity to viruses. Moreover, it can be involved in several biological processes as apoptosis, cell 

development, differentiation, and gene regulation. Produces preferentially dimers of 2'-5'-

oligoadenylates (2-5A) from ATP, which upon binding to the monomeric form of inactive ribonuclease 

L (RNase L), dimerizes and activates the enzyme. When RNase L is activated, both cellular and viral RNA 

are degraded. This inhibits the production of proteins, stopping viral replication. It can either use a 
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different antiviral pathway not dependent on RNase L to produce the antiviral action or the traditional 

RNase L-dependent pathway [76]. The enzyme demonstrates antiviral action against the viruses 

Dengue, Sindbis, Chikungunya, and Semliki Forest (SFV) [77,78]. 

The SNP rs61942233 acts as a pretermination codon in this gene and potentially reduces the length of 

the expressed protein by 22.4 % from 1088 to 844 amino acids. 

The OAS3 gene PTC rs61942233 was found to be statistically significant for the dominant and log-

additive models in this study. However, the minor allele homozygote group had only one subject, 

which limits the statistical power of the analysis. The mean age of subjects with at least one minor 

allele was slightly higher than that of major allele homozygotes, but the effect size was small. 

Furthermore, the study has several limitations, such as the lack of a supercentenarian group and the 

small sample size of the minor allele homozygote group. Additionally, the functional role of the OAS3 

protein is complex and not fully understood, and it is involved in various biological processes, such as 

apoptosis, cell development, differentiation, and gene regulation. While the enzyme produced by 

OAS3 is known to have antiviral action against several viruses, including Dengue, Sindbis, Chikungunya, 

and Semliki Forest, it is unclear whether the PTC identified in this study has any direct effect on the 

antiviral activity of OAS3. It is also worth noting that the viruses mentioned in the gene summary are 

not normally present in Poland, where the study was conducted (although in the past these might have 

affected an ancestral population). Taken together, while the finding of a statistically significant 

association between the OAS3 PTC and longevity phenotype is interesting, the serious limitations of 

the study with respect to longevity and the ambiguous protein function of OAS3 suggest that further 

research is needed to confirm and clarify the potential clinical significance of this association. 

5.1.4  The TAAR2 gene 

The name of the gene TAAR2 refers to trace amine associated receptor 2, earlier called GPR58 (G-

protein coupled receptor). G protein-coupled receptors (GPCRs, or GPRs) include seven 

transmembrane domains and use heterotrimeric G proteins to transmit extracellular signals. The 

sequences of a human cerebellum cDNA encoding phBL5, also known as GPR58, and a rabbit smooth 

muscle cDNA encoding GPR58 were taken from the patent literature by Lee et al. in 2000. Using 

genomic DNA, they extracted the whole human GPR58 coding region [79]. Lindemann et al. (2005) 

discovered a long isoform of TAAR2 by screening the genomic sequence using a nonredundant list of 

all vertebrate G protein-coupled receptors as queries [80]. The functionality of the protein coded by 

this gene, has not yet been covered by any study, although predicted functionality indicates that the 

TAAR2 protein enables trace-amine receptor activity, is involved in G protein-coupled receptor 

signaling pathway and is located in plasma membrane [https://www.alliancegenome.org]. 
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The SNP rs8192646 acts as a pretermination codon in this gene and potentially reduces the length of 

the expressed protein by 52.3 % from 352 to 168 amino acids. 

Based on the results of this study, the TAAR2 gene may be associated with human longevity. The PTC 

rs8192646 located in the TAAR2 gene on chromosome 6 was found to be statistically significant in the 

dominant model, with a large effect size (Cohen's d=0.94). The minor allele homozygote (T/T) group 

had a significantly higher mean age compared to the major allele homozygote (C/C) and heterozygote 

(T/C) group. The fact that the genotype missing data was only 0.1% is a positive aspect of this study, 

as it indicates that the results are likely reliable. Given the lack of information on the gene function 

and the small sample size, we should be cautious in interpreting the results. Nonetheless, the large 

effect size of this PTC could suggest a potential clinical significance for further investigation. 

 

5.1.5  The GBGT1 gene 

The GBGT1 gene is responsible for encoding a glycosyltransferase involved in synthesizing the 

Forssman glycolipid (FG), which is a member of the globoseries glycolipid family. FG, and other 

glycolipids like it, are attachment sites for pathogens to bind to cells, and the expression of this protein 

may determine host tropism to microorganisms. The full name of the gene is globoside alpha-1,3-N-

acetylgalactosaminyltransferase 1 (FORS blood group), and mutations in this gene may result in the 

loss of the ability to synthesize the Forssman glycolipid antigen (FORS1/FG)  [81]. 

The SNP rs35898523 acts as a pretermination codon in this gene and potentially reduces the length of 

the expressed protein by 65.2 % from 348 to 121 amino acids. 

The PTC rs35898523 in the GBGT1 gene showed a statistically significant association with age in a 

recessive model analysis. The effect size was medium, indicating a potential clinical significance. 

However, it should be noted that the sample size in the minor allele homozygote group was small, with 

only 22 subjects. Additionally, this study did not include a supercentenarian group, which limits the 

conclusions that can be drawn regarding the role of this PTC in human longevity. Despite these 

limitations, the findings suggest that the GBGT1 gene may play a role in human aging and disease 

susceptibility, and further research is warranted to explore this potential association. 

5.2 Fertility 

Human fertility, the ability to conceive and reproduce offspring, can be influenced by various factors. 

These factors can be broadly classified into biological, environmental, and lifestyle factors. 
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Fertility decreases with age, especially for women. According to a study published in the journal 

Obstetrics and Gynecology, the probability of conceiving in any given menstrual cycle declines from 

25% for women in their early 20s to 5% for women in their 40s [82]. Certain health conditions, such as 

polycystic ovary syndrome (PCOS), endometriosis, and thyroid disorders, can affect fertility. According 

to a study published in the Journal Fertility and Sterility, PCOS is the most common endocrine disorder 

affecting women of reproductive age and is a leading cause of infertility [83]. Lifestyle factors such as 

smoking, excessive alcohol consumption, and obesity can also impact fertility [84,85]. According to a 

study published in the journal Fertility and Sterility and study published in Human Reproduction 

update, smoking can decrease both male and female fertility, and quitting smoking can improve 

fertility outcomes [84,86]. Another example, a diet rich in fruits, vegetables, and whole grains can 

improve fertility, while a high intake of processed and fast foods can decrease fertility [87]. High levels 

of stress can impact fertility, although the exact mechanism is not fully understood [88].  Exposure to 

environmental toxins and pollutants can also impact fertility. For example, a study published in the 

journal Human Reproduction found that exposure to bisphenol A (BPA) can reduce female fertility [89], 

and another study indicates exposure on certain pesticides can affect male fertility [90]. Genetic 

factors can also play a role in fertility. Certain genetic mutations can affect male fertility, such as 

chromosomal abnormalities or mutations in genes involved in reproductive function [91].  

The following genes might be associated with fertility and have therefore been analyzed. 

 

5.2.1  The MROH2B gene 

There is limited information available about the MROH2B (human) gene, and its exact function is not 

well understood. MROH2B is a member of the MROH (Maestro Heat-like repeat containing protein) 

family of genes. The predicted protein product of MROH2B contains two Maestro heat-like repeats 

and a C-terminal transmembrane domain, suggesting that it may be a membrane-bound protein 

[https://www.alliancegenome.org]. There is currently no known association between mutations in the 

MROH2B gene and any specific disease or disorder.  

 

The SNP rs1023840 acts as a pretermination codon in the MROH2B gene, which is located on 

Chromosome 5, and potentially reduces the length of the expressed protein by 88 % from 1586 to 191 

amino acids. 

Rs1023840 passed the nominal p.value threshold for the recessive model. While the mean value of the 

number of children born was slightly lower in the minor homozygote group than in the major 
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homozygote and heterozygote group, the effect size was very small (Cohen's d= 0.12). It is also 

important to note that the analysis was done with age, sex and district adjustments, which may not be 

enough for the association analysis of such a complex phenotype like fertility. Given the limited 

information available about the MROH2B gene, the small effect size observed in the association 

analysis, and that the findings weren’t confirmed in the subset analysis, it is unlikely that the rs1023840 

PTC in the MROH2B gene has a significant impact on human fertility. 

 

 

 

5.2.2  The KRT83 gene 

 

The KRT83 gene encodes a type II hair keratin, which is a protein component of hair fibers. Specifically, 

KRT83 encodes the keratin KRT83B, which is expressed in the cuticle layer of the hair shaft and plays a 

crucial role in hair formation and maintenance. Studies have shown that mutations in the KRT83 gene 

can lead to hair disorders, such as monilethrix, which is characterized by hair fragility and abnormal 

hair growth patterns [92,93]. Furthermore, KRT83 has been identified as a potential biomarker for hair 

regeneration. In a study by Sennett et al. (2015), KRT83 was found to be one of the most highly 

upregulated genes during hair regeneration in mice, suggesting a potential role for this gene in 

promoting hair growth and maintenance [94]. 

The SNP rs146753414 acts as a pretermination codon in this gene and potentially reduces the length 

of the expressed protein by 59.3 % from 494 to 201 amino acids. 

While the KRT83 gene has been shown to play an important role in hair formation and maintenance, 

there is currently no known association between mutations in this gene and fertility. Furthermore, it 

is important to note that nonsense mutations rarely follow a dominant genetic model. Therefore, the 

finding that rs146753414 in KRT83 follows a dominant genetic model may not be biologically 

meaningful. Additionally, the effect size of this PTC on the number of children born was very small 

(Cohen's d = 0.27)- for the whole group, and small  (Cohen’s d=0.42)- for the subset data, which 

suggests that it is unlikely to have a significant impact on human fertility. Finally, it is important to 

consider that the analysis was done with adjustments for age, sex, and district, which may not be 

sufficient for a complex phenotype like fertility. Therefore, more research is needed to fully understand 

the potential impact of the KRT83 gene on human fertility. 
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5.2.3  The MADD gene 

The MADD gene (also known as IG20 or MAP-kinase activating death domain) encodes a protein that 

plays a role in various cellular processes, including cell proliferation, apoptosis, and differentiation. The 

MADD protein is a multifunctional adaptor protein that contains several functional domains, including 

a death domain, a proline-rich domain, and a C-terminal SH3 domain [95]. One of the primary functions 

of the MADD protein is to regulate the mitogen-activated protein kinase (MAPK) signaling pathway, 

which is involved in the regulation of various cellular processes, including cell growth, differentiation, 

and apoptosis. The MADD protein can activate MAPKs by binding to and activating the upstream 

kinases MEKK1 and MEKK4 [95]. Additionally, the MADD protein has been implicated in the regulation 

of insulin signaling and glucose metabolism. Studies have shown that MADD can interact with the 

insulin receptor and insulin receptor substrate-1 (IRS-1) and regulate insulin-mediated glucose uptake 

in adipocytes [96]. 

The SNP rs35233100 acts as a pretermination codon in this gene and potentially reduces the length of 

the expressed protein by 53.5 % from 1648 to 766 amino acids. 

The results from this study suggest that the rs35233100 PTC in the MADD gene may be associated with 

a slightly higher mean value of number of children born in minor allele homozygotes than in major 

homozygotes and heterozygotes, based on a very small effect size (Cohen’s d= 0.162). However, these 

results were not confirmed in the subset analysis, and the potential role of this gene on human fertility 

is most likely not clinically significant. 

 

 

 

 

 

5.2.4  The CC2D2A gene 

 

The CC2D2A gene encodes a protein called Coiled-coil and C2 domain-containing protein 2A. This 

protein is involved in the development and function of cilia, which are hair-like structures on the 

surface of cells that play important roles in sensing the environment and transmitting signals. 
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Mutations in the CC2D2A gene have been linked to several ciliopathies, which are genetic disorders 

caused by defects in cilia structure or function. These include Joubert syndrome, a rare neurological 

disorder characterized by developmental delay, abnormal eye movements, and breathing 

abnormalities, as well as Meckel-Gruber syndrome, a lethal condition characterized by brain 

malformations, kidney cysts, and other abnormalities [97–99]. The exact role of the CC2D2A protein in 

cilia function is not fully understood, but studies suggest that it may be involved in regulating the 

formation and maintenance of the ciliary membrane and the transport of proteins and other molecules 

into and out of the cilium [100]. 

The SNP rs1861050 acts as a pretermination codon in the CC2D2A gene on chromosome 4 and 

potentially reduces the length of the expressed protein by 28.5 % from 123 to 88 amino acids. 

In the whole group analysis, the PTC rs1861050 p.value was statistically significant after Bonferroni 

correction for the dominant model. The mean value of NCI was slightly higher in the T/C-T/T group 

than in the C/C group, with a very small effect size. However, this PTC did not follow Hardy-Weinberg 

equilibrium (p < 0.05), and there is a high rate of missing genotype data. In the subset analysis, 

rs1861050 also passed nominal p.value threshold for the dominant model, but it also did not follow 

Hardy-Weinberg equilibrium (p < 0.05). The mean value of NCI was slightly higher in the T/T-C/T group 

than in the C/C group, with a very small effect size. It is important to note that there is a high rate of 

missing genotype data, over 25%, and the frequency of the T allele in the study is 50%, which is higher 

than the frequency of the T allele in the world population (5-10%, according to NCBI). In conclusion, 

the association analysis for rs1861050 in the CC2D2A gene showed a slightly higher mean value of NCI 

in the T/C-T/T or T/T-C/T groups compared to the C/C group, with very small effect sizes in both the 

whole group and subset analyses. However, the high rate of missing genotype data and departure from 

Hardy-Weinberg equilibrium raise limitations in the interpretation of the results. Furthermore, the 

high frequency of the T allele in the study population may suggest a possible founder effect or genetic 

drift, and caution should be taken when generalizing the findings to other populations. 

5.2.5  The PKD1L3 gene  

The PKD1L3 gene is a gene that encodes for a protein called polycystin 1 like 3. This protein interacts 

with transient receptor potential (TRP) ion channel proteins, which are involved in taste transduction. 

Ishimaru et al. hypothesized that TRP ion channel proteins other than TRPM5 might be expressed in 

taste cells, and using in situ hybridization, they detected expression of PKD1L3 in mouse circumvallate 

taste cells. Confocal microscopy and coimmunoprecipitation analysis revealed that PKD1L3 is 

coexpressed with PKD2L1, but not TRPM5, in the apical ends of taste cells in circumvallate and foliate 

papillae. Coexpression of PKD1L3 and PKD2L1 was necessary for inducing changes in intracellular 
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calcium concentration in response to acid solutions, suggesting that PKD1L3/PKD2L1 heteromers 

function as sour taste receptors. PKD2L1 was also expressed in taste cells in other areas of the tongue 

and palate [101,102]. 

 

The SNP rs4788587 acts as a pretermination codon in this gene and potentially reduces the length of 

the expressed protein by 54.5 % from 1733 to 789 amino acids. 

However, despite the interesting findings on PKD1L3's role in taste transduction, the genetic 

association analysis performed here found no significant associations between selected 

pretermination codons (PTCs) from single nucleotide polymorphisms (SNPs) in the PKD1L3 gene and 

the number of children per individual. While one PTC (rs4788587) passed the Bonferroni correction p-

value threshold for the dominant model, the effect size was very small (Cohen's d=0.13) and the mean 

value of NCI was only slightly lower in the A/G-A/A (heterozygote, minor allele homozygote) group 

compared to the G/G (major allele homozygote) group. Furthermore, in subset analysis, no statistically 

significant associations were found between the selected PTCs and number of children per individual 

for any genetic models analyzed. These limitations suggest that the PKD1L3 gene may not have a 

significant role in fertility or reproductive success. 

 

5.2.6  The PKD1L2 gene  

PKD1L2 is a gene that encodes for a transmembrane protein which belongs to the polycystin protein 

family. These proteins play important roles in the development of cilia and maintaining calcium 

homeostasis in renal tubular cells. PKD1L2 interacts with GNAS and GNAI1 and is thought to function 

as a G-protein-coupled component or regulator of cation channel pores [103]. The long isoform of this 

protein contains 11 transmembrane domains, a GPS domain, and a PLAT domain. Knockdown of 

PKD1L2 inhibits HIV-1 replication in HeLa-derived TZM-bl cells [104]. Additionally, a copy number 

variation in PKD1L2 has been linked to an increased predisposition to colorectal cancer in the Korean 

population [105]. 

The SNP rs12925771 acts as a pretermination codon in this gene and potentially reduces the length of 

the expressed protein by 49.5 % from 806 to 407 amino acids. 

There are some limitations to consider in the interpretation of the findings related to the PKD1L2 gene. 

Firstly, while the PTC rs12925771 in the PKD1L2 gene was found to be associated with differences in 

NCI, its effect size was very small, additionally the result was only present in the subset study. 
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Therefore, caution should be exercised when interpreting the clinical significance of this finding, as the 

overall impact of this variant on the regulation of NCI is likely to be minimal. 

5.2.7  The ZNF883 gene 

Research on ZNF883 is still in its early stages, and there is limited information available on its specific 

functions and roles in human biology. The ZNF883 protein is predicted to have DNA-binding and 

transcription factor activities specific to RNA polymerase II and cis-regulatory DNA sequences, and is 

also predicted to play a role in regulating transcription by RNA polymerase II in the nucleus 

[https://www.alliancegenome.org]. 

The SNP rs10981589 acts as a pretermination codon in this gene and potentially reduces the length of 

the expressed protein by 10.3 % from 380 to 341 amino acids. 

The limitations of this study include the fact that the research on ZNF883 is still in its early stages and 

its specific functions and roles in human biology are not yet well understood. Additionally, the sample 

size of the minor allele homozygote group in this study was very small (only 5 subjects), which may 

limit the generalizability of the results. Furthermore, the NCI phenotype measured in this study may 

not be directly related to the function of ZNF883, and additional research is needed to establish a clear 

connection between this gene and reproductive outcomes. Finally, although the p-value for the 

association between rs10981589 and NCI passed the nominal threshold, it did not meet the Bonferroni 

correction threshold for multiple testing, indicating the possibility of false positive results. Therefore, 

further studies are needed to confirm these findings and establish the clinical significance of this gene 

in relation to fertility. 

5.2.8  The CLEC7A gene 

The CLEC7A gene encodes the protein Dectin-1, which belongs to the C-type lectin family and is 

involved in the recognition of fungal pathogens. Dectin-1 is expressed on the surface of various 

immune cells, including dendritic cells, macrophages, and neutrophils, and plays a critical role in the 

initiation of the innate immune response to fungal infections [106]. Several studies have investigated 

the structure, function, and regulation of the CLEC7A gene and its protein product, Dectin-1. For 

example, a study by Brown et al. (2003) identified the CLEC7A gene and demonstrated that it encodes 

a type II transmembrane protein with a single extracellular C-type lectin-like domain. In addition, the 

study showed that Dectin-1 binds to β-glucans, a component of the fungal cell wall, and triggers 

downstream signaling pathways that activate innate immune responses [106]. Another study by 

Goodridge et al. (2011) investigated the regulation of CLEC7A gene expression in human dendritic cells. 

The study showed that the expression of CLEC7A and Dectin-1 is induced by the fungal pathogen 
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Candida albicans through the activation of the transcription factor NF-κB. The study also showed that 

the expression of CLEC7A and Dectin-1 is regulated by multiple microRNAs, which play a role in the 

modulation of the innate immune response [107]. However, there is no direct evidence linking the 

known function of this gene to fertility. 

The SNP rs16910526 acts as a pretermination codon in this gene and potentially reduces the length of 

the expressed protein by 5 % from 202 to 192 amino acids. 

The present study in this thesis analyzed the association between the PTC rs16910526 in the CLEC7A 

gene and fertility. The mean NCI was significantly higher in the minor allele homozygote group than in 

the major allele homozygote + heterozygote group, with a large effect size (Cohen’s d = 0.97). 

However, it's important to note that the p-value for this association did not pass Bonferroni correction, 

and caution should be exercised when drawing conclusions. The nominal p-value threshold was used 

to identify the association, and this could result in false positives. Also, the study has some limitations, 

such as a relatively small sample size in the minor allele homozygote group, and a lack of enough 

adjustment for potential confounding factors. Therefore, further research is needed to validate these 

findings and investigate the possible clinical significance of the association between PTC rs16910526 

in the CLEC7A gene and fertility. 

5.2.9  The SLC6A18 gene 

The SLC6A18 gene encodes a member of the solute carrier family 6, which is a group of sodium- and 

chloride-dependent neurotransmitter transporters. The SLC6A18 transporter, also known as Xtrp2, act 

as specific transporter of amino acids, neurotransmitters, and osmolytes like betaine, taurine, and 

creatine  across the plasma membrane of epithelial cells in the intestine and kidney [108]. Mutations 

in the SLC6A18 gene have been linked to iminoglycinuria and hyperglycinuria phenotypes [109]. 

Another statistically significant association result in the NCI subset study was the PTC rs7447815, found 

in the SLC6A18 gene. The SNP rs7447815 acts as a pretermination codon in this gene and potentially 

reduces the length of the expressed protein by 49.3 % from 629 to 319 amino acids. 

 

The mean value of NCI in the minor allele homozygote group was slightly lower than in the major allele 

homozygote and heterozygote group, with a very small effect size of Cohen's d = 0.2. This small effect 

size, combined with other limitations such as the failure to pass the Bonferroni correction and the 

absence of a proven connection between SLC6A18 gene function and fertility, makes it difficult to draw 

any firm conclusions from this study regarding the relationship between this PTC and fertility. 
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5.3 Obesity 

Obesity is a complex condition that results from a combination of genetic, environmental, and 

behavioral factors. A person's genetic makeup can increase their susceptibility to obesity. According 

to a study published in the New England Journal of Medicine, the heritability of obesity is estimated to 

be 40-70% [110]. Mutations in the FTO, MC4R, TMEM18, SH2B1, PCSK1 genes have been associated 

with increased risk of obesity [111–115]. Environmental factors such as access to high-calorie foods, 

sedentary lifestyle, and lack of physical activity can contribute to obesity. A diet high in calories, sugar, 

and saturated and trans fats can increase the risk of obesity. According to a study published in the 

American Journal of Clinical Nutrition, a high intake of sugar-sweetened beverages is associated with 

an increased risk of obesity [116]. Lack of physical activity is a major risk factor for obesity. According 

to a study published in the International Journal of Epidemiology, physical inactivity is responsible for 

approximately 30% of obesity cases [117]. Certain medical conditions such as hypothyroidism, 

Cushing's syndrome, and polycystic ovary syndrome can increase the risk of obesity. According to a 

study published in the Journal of Clinical Endocrinology and Metabolism, approximately 10% of obesity 

cases are due to an underlying medical condition [118]. Certain medications such as corticosteroids, 

antidepressants, and antipsychotics can cause weight gain and increase the risk of obesity. According 

to a study published in the Journal of Clinical Psychopharmacology, approximately 20-30% of 

individuals taking antipsychotic medications experience significant weight gain [119]. 

The following genes have a possible association with obesity. 

 

5.3.1  The HYKK gene 

The HYKK gene encodes for a protein that enables the activity of hydroxylysine kinase. This protein is 

predicted to be involved in the catabolic process of lysine and is expected to be located in the 

mitochondrial matrix [https://www.alliancegenome.org].  

The SNP rs183603441 acts as a pretermination codon in this gene and potentially reduces the length 

of the protein by 61.2 % from 374 to 145 amino acids. 

While the PTC rs183603441 in the HYKK gene passed the nominal p-value threshold for a dominant 

model and showed a very small effect size (Cohen’s d = 0.155), the difference in mean BMI between 

the major allele homozygote group and the heterozygote + minor allele group was also very small. 

Additionally, there is currently no known association between mutations in the HYKK gene and any 

specific disease or disorder. Moreover, qualitative analysis did not confirm the result. Therefore, it is 

unlikely that these results have any practical clinical implications at this time. 
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5.3.2  The TRPM1 gene 

The TRPM1 gene is a member of the transient receptor potential (TRP) family of ion channels. It is 

expressed in the retina, where it plays a crucial role in the development and function of certain cells 

called ON bipolar cells [120]. These cells are involved in the first step of visual processing and are 

responsible for transmitting visual signals from the photoreceptor cells to the ganglion cells in the 

retina. TRPM1 is thought to regulate the release of neurotransmitters from ON bipolar cells, which is 

essential for normal visual function [121]. Mutations in the TRPM1 gene have been associated with a 

rare form of congenital stationary night blindness (CSNB), a condition that affects the ability to see in 

low light conditions [122]. 

The SNP rs3784589 acts as a pretermination codon in this gene and potentially reduces the length of 

the protein by 14.3 % from 1604 to 1375 amino acids. 

In this study, the PTC (rs3784589) p.value passed the nominal p.value threshold for overdominant, log-

additive and dominant models. However, the best-fitted model was the overdominant model. The 

mean value of BMI was slightly higher in the A/C (heterozygote) group than in the C/C-A/A group, with 

a very small effect size (Cohen’s d = 0.106). Despite these findings, the limitations of this study should 

be taken into account when interpreting the results. First, there is no connection between the 

functionality of the TRPM1 gene and obesity. Second, the overdominant model is hard to interpret for 

a nonsense mutation as these mutations usually follow a recessive pattern. Therefore, the 

overdominant model may not be the best fit for this PTC, and the results should be interpreted with 

caution. Overall, the findings related to this gene are not likely to be clinically significant due to the 

low effect size and limitations mentioned above. 

5.3.3  The CLYBL gene 

The CLYBL gene codes for the enzyme cysteine lyase beta-lyase (CLYBL), which has been shown to 

enable (S)-citramalyl-CoA lyase activity, magnesium ion binding activity, and malate synthase activity. 

It has also been implicated in protein homotrimerization and the regulation of cobalamin metabolic 

processes. The protein is predicted to be located in the mitochondrion and may also be an integral 

component of the membrane [123]. The CLYBL gene is broadly expressed in various tissues, including 

the kidney (RPKM 2.9) and liver (RPKM 2.6). Recent studies have suggested that the CLYBL enzyme 

plays an important role in the metabolism of vitamin B12 and is involved in the conversion of vitamin 

B12 into a form that can be used by the body to produce energy. In fact, the human knockout gene for 

CLYBL has been shown to connect itaconate to vitamin B12 [124]. 
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The SNP rs41281112 acts as a pretermination codon in this gene and potentially reduces the length of 

the expressed protein by 24 % from 341 to 259 amino acids. 

Based on the genetic association analysis in the present thesis,  rs41281112 passed the nominal p.value 

threshold for dominant and overdominant models. However, a better genetic model could not be 

determined with AIC value, and therefore the dominant model was used for analysis. This PTC is 

located in the CLYBL gene on and follows Hardy-Weinberg equilibrium. The mean value of BMI was 

slightly higher in the group with at least one minor allele, with a Cohen’s d of 0.15, indicating a very 

small effect size. It is important to note that the genetic model for this RS is hard to interpret as it 

follows a dominant pattern, while nonsense mutations typically follow a recessive pattern. 

Furthermore, the effect size observed in the study is very small, indicating that the findings related to 

this gene may not have any clinical significance in regards to obesity.  

 

5.3.4  The ERV3-1 gene 

The ERV3-1 gene, also known as endogenous retrovirus group 3 member 1, codes for a protein with 

sequence derived from an endogenous retrovirus, which is why it is similar to multiple other loci in the 

human genome. The transcripts at this locus encode a conserved protein with a predicted signal 

peptide and similarity to the Env polyprotein, suggesting a possible role in viral entry and fusion. In 

addition to its role in regulating the immune response and the maternal-fetal interface, the ERV3-1 

protein is also overexpressed in certain types of cancer, including colorectal cancer and other cancers 

[125,126]. It is expressed at high levels in the adrenal gland and fat tissue [127]. 

The SNP rs67047829 acts as a pretermination codon in this gene and potentially reduces the length of 

the expressed protein by 73.1 % from 605 to 223 amino acids. 

rs67047829, on ERV3-1, showed a potential clinical significance in its association with BMI. The 

rs67047829 PTC passed the nominal p-value threshold for recessive and additive models, with the 

recessive model being the best fit for this dataset based on AIC. This PTC is located in the ERV3-1 gene 

on chromosome 7. The minor allele homozygote group (A/A) had a significantly lower mean BMI 

compared to the major allele homozygote group (G/G-A/G) (Cohen's d = 0.48, small effect size). In the 

A/A group, 64.3% of the subjects were of normal weight, while in the G/G-A/G group, only 48.3% of 

the subjects were of normal weight. Furthermore, the post hoc analysis revealed a significant 

difference in the proportion of subjects with normal weight versus obesity between the two groups 

(OR= 0.183, 95% CI:[ 0.021, 0.713], p = 0.0059). These findings suggest that the minor allele 

homozygote of rs67047829 may be associated with a lower risk of obesity. 
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5.3.5  The GPRC6A gene 

The GPRC6A gene encodes a member of the G protein-coupled receptor family, which is expressed in 

a variety of tissues, including bone, kidney, testis, and brain. The protein product of this gene is called 

the GPRC6A receptor. The GPRC6A receptor is activated by a variety of ligands, including amino acids, 

calcium ions, and osteocalcin, a hormone secreted by bone cells. Activation of the receptor has been 

shown to play a role in regulating insulin secretion, glucose homeostasis, and bone metabolism [128]. 

The SNP rs6907580 acts as a pretermination codon in this gene and potentially reduces the length of 

the protein by 93.9 % from 927 to 57 amino acids. 

 

Rs6907580 passed the nominal p-value threshold. The quantitative analysis found no significant 

difference in BMI mean values between the G/G (major allele homozygote) and A/G-A/A 

(heterozygote, minor allele homozygote) groups. Moreover, the post-hoc analysis (normal weight vs 

obesity) indicated a small effect size (OR=0.71, 95% CI:[0.51, 0.96], p=0.024) between groups. 

Therefore, the likelihood of clinical significance of rs6907580 in relation to obesity risk is considered 

low or close to none (upper CI = 0.96). 

5.3.6  The LCN10 gene 

The LCN10 gene, also known as Lipocalin 10, is a member of the lipocalin protein family. Lipocalins are 

small extracellular proteins that are involved in a variety of biological processes, including transport of 

small molecules, regulation of inflammation, and modulation of cell signaling [129]. The exact function 

of the LCN10 protein is not yet fully understood.  

The SNP rs9886752 acts as a pretermination codon in this gene and potentially reduces the length of 

the protein by 19.9 % from 201 to 161 amino acids. 

 

Rs9886752 passed the nominal p-value threshold for qualitative analysis. The results showed that the 

minor allele of rs9886752 was associated with an increased risk of obesity. In the A/G-A/A group, 17.2% 

were obese compared to 13.8% in the G/G group, and post hoc analysis showed significant differences 

in proportions (OR=1.29, 95% CI:[1.06, 1.565], p=0.008) between the two groups. However, the 

quantitative analysis did not confirm this result. It is important to note that although there was a 

significant difference in proportions, the effect size was relatively small, and the clinical significance of 

this finding is not clear at this time. Further studies are needed to investigate the potential role of 

LCN10 in the development of obesity. 
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5.4 Summary 

The present study aimed to investigate the possible associations between pretermination codons 

(PTCs) and three different phenotypes: longevity, fertility, and obesity risk. The study analyzed 141 PTC 

single nucleotide polymorphisms (SNPs) (from 5095 patients) and found that 21 of them showed 

statistically significant associations with at least one of the three phenotypes. However, caution is 

advised when interpreting these results, as complex phenotypes such as longevity, fertility, and obesity 

risk require careful study design to identify true genetic associations. 

One promising candidate for further analysis is the ERV3-1 gene, as a SNP on this gene (rs67047829) 

showed potential clinical significance in its association with BMI. The minor allele homozygote group 

(A/A) had a significantly lower mean BMI compared to the major allele homozygote group (G/G-A/G), 

and post-hoc analysis revealed a significant difference in the proportion of subjects with normal weight 

versus obesity between the two groups. These findings suggest that the minor allele homozygote of 

rs67047829 may be associated with a lower risk of obesity. 

Despite the interesting findings, the study has several limitations. Firstly, research on some of the PTC 

SNPs is still in its early stages, and the specific functions and roles of these SNPs in human biology are 

not yet well understood. Secondly, the sample size of the minor allele homozygote group for some of 

the SNPs in this study was very small, which may limit the generalizability of the results. Thirdly, the 

phenotypes measured in this study may not be directly related to the function of some of the PTC 

SNPs, and additional research is needed to establish clear connections between these genes and 

outcomes. Finally, although the p-values for the associations between some of the PTC SNPs and the 

three phenotypes passed a nominal threshold, they did not meet the Bonferroni correction threshold 

for multiple testing, indicating the possibility of false positive results. Therefore, further studies are 

needed to confirm these findings and establish the clinical significance of these genes in relation to 

longevity, fertility, and obesity risk. 
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5.4.1  Limitations 

 

• Longevity: Some studies have suggested that an association analysis with longevity should be 

performed between two groups: supercentenarians and a healthy, younger control group. 

However, since the original purpose of database used in this study was an association analysis 

using the obesity phenotype, it wasn't possible to create a proper supercentenarian group. 

Thus, the study's findings regarding longevity should be interpreted with caution. Additionally, 

the present study analyzed single-gene associations with the complex phenotype of longevity, 

which is influenced by a combination of genetic, environmental, and lifestyle factors. This 

complexity presents a limitation in the study, as age analysis without proper adjustments can 

only unequivocally demonstrate large genotypic effects. 

• A large amount of missing genotype data for some of the SNPs: The study found statistically 

significant PTCs for multiple genes, but a significant proportion of patients had missing 

genotype data for some of these PTCs. This limits the study's ability to draw meaningful 

conclusions about the association of these PTCs with longevity. 

• Ambiguous protein function: The protein function of some of the genes under investigation is 

unclear. This adds to the uncertainty surrounding the clinical significance of these PTCs. 

Without a clear understanding of how these genes and their associated PTCs influence the 

analyzed phenotype, it is difficult to draw any conclusions about their potential clinical 

relevance. 

• Sample size: the sample size for some groups (minor allele homozygotes) for some SNPs in this 

study was very small, which may limit the statistical power of the analysis and the 

generalizability of the results 

 

• Low effect size: The study found statistically significant PTCs for multiple genes, but the effect 

size for some of these PTCs was very low. This suggests that these PTCs are unlikely to have a 

significant impact on human longevity. While statistically significant, the small effect size 

diminishes the clinical significance of these PTCs. 

• Impact of missing genotype data on study accuracy and reliability: The high amount of missing 

genotype data for some of the PTCs in the study can significantly impact the accuracy and 

reliability of genetic association studies. Without complete and accurate genotype data, it is 

difficult to draw valid conclusions about the association of PTCs with phenotype. 
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• P.value: Although some associations between genetic variants and the phenotype passed a 

nominal threshold, they did not meet the Bonferroni correction threshold for multiple testing, 

indicating the possibility of false positive results 
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6. Abstract 

Mutations play a crucial role in adaptation to new environmental conditions, including changes in 

protein functionality that are necessary for adaptation in biochemical pathways. However, mutations 

can also lead to diseases such as cystic fibrosis, Duchenne muscular dystrophy, β-thalassemia, and 

cancer. The occurrence of premature stop codons is a common cause of such diseases, and these can 

arise from germline or somatic DNA mutations, inaccurate pre-mRNA splicing, or lack of optimization 

of RNA editing. Natural selection can result in new alleles with high frequencies of derived alleles and 

varying levels of population diversity. In the present study, 141 SNPs which lead to premature stop 

codons were studied, most of which have high enough frequencies (>5%) to be regarded as being 

subject to near-neutral selection. These PTCs were selected from a study by Fujikura et al, and some 

of the genes harboring the mutation have been ontologically categorized as being involved in 

metabolism, drug metabolism, the immune system, zinc fingers, and keratin. Based on this ontology, 

the phenotypes analyzed in the present study were: obesity, overweight, fertility, and life expectancy. 

The specific aims of the present study were the analysis of possible associations between 

pretermination codons and age (life span), analysis of possible associations between pretermination 

codons and the number of children (fertility) and analysis of possible associations between 

pretermination codons and body mass index (obesity and overweight). 

Association analysis was performed on a database obtained through an agreement with the University 

of Lodz, which contained 5,600 samples from healthy people in Poland, with 500,000 SNPs from each 

subject, including 141 PTC SNPs. All statistical association analyses for this thesis were performed using 

the R statistical platform. The standardized effect sizes used in this thesis were: Cohen’s d, Spearman’s 

r and odds ratio. For association analysis with quantitative variables, linear and logistic regression 

models, implemented in the R SNPassoc package, were used. All statistical tests were two-tailed and 

two statistical significance p.value thresholds were set, the nominal p < 0.05 and after Bonferroni 

correction < (0.05/141 SNPs analyzed) = 3.55 x 10-4. For the qualitative variable of BMI categories 

versus SNP for dominant and recessive models, the Fisher exact test and Cochran Armitage trend test 

were used.  

The study aimed to investigate possible associations between PTCs and three different phenotypes: 

longevity, fertility, and obesity risk. The study analyzed 141 PTC SNPs (from 5095 patients) and found 

that 21 of them showed statistically significant associations with one of the three phenotypes. One 

promising candidate for further analysis is the ERV3-1 gene, as a SNP on this gene (rs67047829) 

showed a potential clinical significance in its association with BMI. Despite the interesting findings, the 

study has several limitations, and these results should be treated with caution. 
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6.1 Streszczenie 

Mutacje odgrywają kluczową rolę w adaptacji do nowych warunków środowiskowych, w tym w 

zmianach funkcjonalności białek, które są niezbędne do adaptacji w szlakach biochemicznych. Jednak 

mutacje mogą także prowadzić do chorób, takich jak mukowiscydoza, dystrofia mięśniowa 

Duchenne'a, β-talasemia i nowotwory. Występowanie przedwczesnych kodonów stop jest 

powszechną przyczyną takich chorób, a mogą one wynikać z mutacji germlinej lub somatycznej DNA, 

niedokładnego splicingu pre-mRNA lub braku optymalizacji edycji RNA. Naturalna selekcja może 

prowadzić do nowych alleli z wysoką częstością pochodnych alleli i zróżnicowanym poziomem 

zróżnicowania populacji. W niniejszym badaniu przeanalizowano 141 SNPs prowadzących do 

przedwczesnych kodonów stop, z których większość ma wystarczająco wysokie występowanie (> 5%) 

by być uważane za podlegające niemal neutralnej selekcji. PTCs zostały wybrane z badania Fujikury i 

wsp., a niektóre z genów zawierających mutację zostały ontologicznie sklasyfikowane jako związane z 

metabolizmem, metabolizmem leków, układem odpornościowym, palcami cynkowymi i keratyną. Na 

podstawie tej ontologii w niniejszym badaniu analizowane były następujące fenotypy: otyłość, 

nadwaga, płodność i długość życia. 

Konkretne cele niniejszego badania to analiza możliwych związków między kodonami 

przedterminacyjnymi a wiekiem (długość życia), analiza możliwych związków między kodonami 

przedterminacyjnymi a liczbą dzieci (płodność) oraz analiza możliwych związków między kodonami 

przedterminacyjnymi a wskaźnikiem masy ciała (otyłość i nadwaga). 

Analiza skojarzeń została przeprowadzona na bazie danych uzyskanej na podstawie umowy z 

Uniwersytetem Łódzkim, która zawierała 5 600 próbek zdrowych ludzi w Polsce, z 500 000 SNP od 

każdego badanego, w tym 141 SNP PTC. Wszystkie analizy skojarzeń statystycznych w tej pracy 

doktorskiej zostały przeprowadzone za pomocą platformy statystycznej R. Standaryzowane wielkości 

efektów używane w tej pracy to: d Cohena, r Spearmana i współczynnik szans. Do analizy skojarzeń z 

zmiennymi ilościowymi wykorzystano modele regresji liniowej i logistycznej, zaimplementowane w 

pakiecie R SNPassoc. 

Wszystkie testy statystyczne były dwustronne i ustalono dwa progi istotności statystycznej: nominalny 

p <0,05 oraz skorygowany Bonferronim p < (0,05 / 141 SNP analizowanych) = 3,55 x 10-4. Dla zmiennej 

jakościowej kategorii BMI względem SNP dla modeli dominujących i recesywnych użyto testu exact 

dokładnego Fishera oraz testu trendy Cochran-Armitage'a. 

Celem badania było zbadanie możliwych związków między PTC a trzema różnymi fenotypami: 

długowiecznością, płodnością i ryzykiem otyłości. W badaniu przeanalizowano 141 SNP PTC (z 5095 
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pacjentów) i stwierdzono, że 21 z nich wykazywało statystycznie istotne związki z jednym z trzech 

fenotypów. Jednym obiecującym kandydatem do dalszej analizy jest gen ERV3-1, ponieważ SNP na tym 

genie (rs67047829) wykazał potencjalne znaczenie kliniczne w związku z BMI. Mimo ciekawych 

wyników, badanie ma kilka ograniczeń, a te wyniki należy traktować z rozwagą. 
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